910 research outputs found
SB 319: Chairman John Meadows Act
This Act removes the requirement to obtain a weapons carry license to carry concealed weapons in public spaces. The Act makes it lawful to carry a firearm in public so long as the individual is eligible for a license, has a license, or has a license in different state, and is not prohibited by law from possessing a firearm. Additionally, the Act applies the new licensing standard to provisions regarding the use or possession of a firearm in a park, historic site, or recreational area; courthouses, government buildings, and parking lots; at schools; by service members of the armed forces; on public transportation; wildlife management areas; and public fishing areas
Achievements in CTF3 and Commissioning status
The aim of the latest CLIC test facility CTF3, built at CERN by an international collaboration, is to prove the main feasibility issues of the CLIC two-beam acceleration technology. Several of the main goals have been already achieved in the past years, like the full-loading linac operation mode and the delay loop principle. During 2008 also the combiner ring concept has been experimentally proven and the recombined beam has been used to generate the RF power. In parallel in the fall of the year also the probe beam line commissioning had started
Experimental Studies on Drive Beam Generation in CTF3
The objective of the CLIC Test Facility CTF3, built at CERN by an international collaboration, is to demonstrate the main feasibility issues of the CLIC two-beam technology by 2010. CTF3 consists of a 150 MeV electron linac followed by a 42 m long delay loop, an 84 m combiner ring and a two-beam test area. One keyissue studied in CTF3 is the efficient generation of a very high current drive beam, used in CLIC as the power source for the acceleration of the main beam to multi-TeV energies. The beam current is first doubled in the delay loop and then multiplied again by a factor four in the combiner ring by interleaving bunches using transverse deflecting RF cavities. The combiner ring and the connecting transfer line have been installed and put into operation in 2007. In this paper we give the status of the commissioning, illustrate the beam optics measurements, discuss the main issues and present the results of the combination tests
Using LiDAR to Link Forest Canopy Structure with Bat Activity and Insect Occurrence: Preliminary Findings
Bats are an imperiled, yet ecologically-important group of vertebrate predators. Our ongoing research focuses on testing hypotheses about the relationships between the effects of fire on canopy structure and insect prey availability, and how these factors relate to use of foraging space by bats during the pre- and post-hibernation periods at Mammoth Cave National Park (MCNP). LiDAR-derived data (October 2010) were intersected with spatially explicit sampling of bat and insect populations (2010-2011) in order to characterize relationships between canopy structure, insect abundance, and bat activity. A canonical correspondence analysis for bat data suggested that forest canopy structure has a strong relationship with bat activity, particularly for species that echolocate at higher frequencies. Less variation was accounted for in a canonical correspondence analysis of insect occurrence. Even so, this analysis still demonstrated that variation in forest canopy structure influences the insect community at MCNP, albeit in varied ways for specific orders of insects
Quantum well behavior of single stacking fault 3C inclusions in 4H-SiC p-i-n diodes studied by ballistic electron emission microscopy
We show that "single" stacking fault 3C inclusions formed in 4H-SiC p-i-n diodes behave as electron quantum wells (QWs) with the QW energy depth of ???0.25 eV below 4H-SiC conduction band minimum, by measuring the Schottky barriers on and away from inclusions with ballistic electron emission microscopy (BEEM). The Schottky barrier on the 4H area ([11-20] oriented) is measured to be essentially the same as (0001) plane studied previously, indicating that the interface pinning effects on both crystal faces are almost identical. Additionally, BEEM current amplitude is observed to be very sensitive to subsurface damage induced by polishing.open91
Recommended from our members
Effects of Soil Matrix and Aging on the Dermal Bioavailability of Polycyclic Aromatic Hydrocarbons in the Soil
The potential health risk from exposure to chemically contaminated soil can be assessed from bioavailability studies. The aims of this research were: (a) to determine the dermal bioavailability of contaminants in soil for representatives of the polycyclic aromatic hydrocarbon class of chemicals, namely, benzo(a)pyrene and naphthalene, and (b) to examine the relative contribution of soil matrix and chemical sequestration in soil with time (âagingâ) on their bioavailability. In vitro flow-through diffusion cell studies were performed utilizing dermatomed male pig skin and radioactive chemicals to measure dermal penetration. Volatilization of naphthalene was predominant in reducing the amount of chemical available for dermal penetration. Immediate contact with either of two soils reduced volatilization, however, only the soil with higher clay content resulted in reduced penetration. Aging in higher sand content soil and higher clay content soil further reduced skin penetration by 23 and 70 fold, respectively, versus naphthalene in the absence of soil. Benzo(a)pyrene penetration was reduced \u3e88% following immediate contact with either soil with further reductions occurring after aging. While aging in either soil reduced the dermal penetration of both naphthalene and benzo(a)pyrene, the effect on naphthalene was much greater. The results of this study suggest that the bioavailability from dermal exposure to the polycyclic aromatic chemicals examined can be significantly reduced by soil matrix and aging in soil, resulting in reduced potential health risk following dermal exposure
Estimation of Plot-Level Burn Severity Using Terrestrial Laser Scanning
Monitoring wildland fire burn severity is important for assessing ecological outcomes of fire and their spatial patterning as well as guiding efforts to mitigate or restore areas where ecological outcomes are negative. Burn severity mapping products are typically created using satellite reflectance data but must be calibrated to field data to derive meaning. The composite burn index (CBI) is the most widely used field-based method used to calibrate satellite-based burn severity data but important limitations of this approach have yet to be resolved. The objective of this study was focused on predicting CBI from point cloud and visible-spectrum camera (RGB) metrics derived from single-scan terrestrial laser scanning (TLS) datasets to determine the viability of TLS data as an alternative approach to estimating burn severity in the field. In our approach, we considered the predictive potential of post-scan-only metrics, differenced pre- and post-scan metrics, RGB metrics, and all three together to predict CBI and evaluated these with candidate algorithms (i.e., linear model, random forest (RF), and support vector machines (SVM) and two evaluation criteria (R-squared and root mean square error (RMSE)). In congruence with the strata-based observations used to calculate CBI, we evaluated the potential approaches at the strata level and at the plot level using 70 TLS and 10 RGB independent variables that we generated from the field data. Machine learning algorithms successfully predicted total plot CBI and strata-specific CBI; however, the accuracy of predictions varied among strata by algorithm. RGB variables improved predictions when used in conjunction with TLS variables, but alone proved a poor predictor of burn severity below the canopy. Although our study was to predict CBI, our results highlight that TLS-based methods for quantifying burn severity can be an improvement over CBI in many ways because TLS is repeatable, quantitative, faster, requires less field-expertise, and is more flexible to phenological variation and biomass change in the understory where prescribed fire effects are most pronounced. We also point out that TLS data can also be leveraged to inform other monitoring needs beyond those specific to wildland fire, representing additional efficiency in using this approach
- âŠ