4,362 research outputs found

    Quantum dynamics of localized excitations in a symmetric trimer molecule

    Full text link
    We study the time evolution of localized (local bond) excitations in a symmetric quantum trimer molecule. We relate the dynamical properties of localized excitations such as their spectral intensity and their temporal evolution (survival probability and tunneling of bosons) to their degree of overlap with quantum tunneling pair states. We report on the existence of degeneracy points in the trimer eigenvalue spectrum for specific values of parameters due to avoided crossings between tunneling pair states and additional states. The tunneling of localized excitations which overlap with these degenerate states is suppressed on all times. As a result local bond excitations may be strongly localized forever, similar to their classical counterparts.Comment: 9 pages, 12 figures. Improved version with more discussions. Some figures were replaced for better understanding. Accepted in Phys. Rev.

    Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers

    Full text link
    We investigate an inductive probe head suitable for non-invasive characterization of the magnetostatic and dynamic parameters of magnetic thin films and multilayers on the wafer scale. The probe is based on a planar waveguide with rearward high frequency connectors that can be brought in close contact to the wafer surface. Inductive characterization of the magnetic material is carried out by vector network analyzer ferromagnetic resonance. Analysis of the field dispersion of the resonance allows the determination of key material parameters such as the saturation magnetization MS or the effective damping parameter Meff. Three waveguide designs are tested. The broadband frequency response is characterized and the suitability for inductive determination of MS and Meff is compared. Integration of such probes in a wafer prober could in the future allow wafer scale in-line testing of magnetostatic and dynamic key material parameters of magnetic thin films and multilayers

    Acoustic breathers in two-dimensional lattices

    Full text link
    The existence of breathers (time-periodic and spatially localized lattice vibrations) is well established for i) systems without acoustic phonon branches and ii) systems with acoustic phonons, but also with additional symmetries preventing the occurence of strains (dc terms) in the breather solution. The case of coexistence of strains and acoustic phonon branches is solved (for simple models) only for one-dimensional lattices. We calculate breather solutions for a two-dimensional lattice with one acoustic phonon branch. We start from the easy-to-handle case of a system with homogeneous (anharmonic) interaction potentials. We then easily continue the zero-strain breather solution into the model sector with additional quadratic and cubic potential terms with the help of a generalized Newton method. The lattice size is 70×7070\times 70. The breather continues to exist, but is dressed with a strain field. In contrast to the ac breather components, which decay exponentially in space, the strain field (which has dipole symmetry) should decay like 1/ra,a=21/r^a, a=2. On our rather small lattice we find an exponent a≈1.85a\approx 1.85

    Discrete breathers in systems with homogeneous potentials - analytic solutions

    Full text link
    We construct lattice Hamiltonians with homogeneous interaction potentials which allow for explicit breather solutions. Especially we obtain exponentially localized solutions for dd-dimensional lattices with d=2,3d=2,3.Comment: 10 page

    Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Full text link
    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping a LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum an LSM can be continuously converted into ILMs and visa versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.Comment: 7 pages 7 figure

    Obtaining Breathers in Nonlinear Hamiltonian Lattices

    Full text link
    We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.Comment: 21 pages (LaTeX), 8 figures in ps-files, tar-compressed uuencoded file, Physical Review E, in pres

    Generation of Intrinsic Vibrational Gap Modes in Three-Dimensional Ionic Crystals

    Full text link
    The existence of anharmonic localization of lattice vibrations in a perfect 3-D diatomic ionic crystal is established for the rigid-ion model by molecular dynamics simulations. For a realistic set of NaI potential parameters, an intrinsic localized gap mode vibrating in the [111] direction is observed for fcc and zinc blende lattices. An axial elastic distortion is an integral feature of this mode which forms more readily for the zinc blende than for the fcc structure. Molecular dynamics simulations verify that in each structure this localized mode may be stable for at least 200 cycles.Comment: 5 pages, 4 figures, RevTeX, using epsf.sty. To be published in Phys. Rev. B. Also available at http://www.msc.cornell.edu/~kiselev

    The Cosmic Microwave Background & Inflation, Then & Now

    Get PDF
    Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance), especially when combined with data on high redshift supernovae (SN1) and large scale structure (LSS). There are ``7 pillars of Inflation'' that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due to shear viscosity; (4) a Gaussian (maximally random) distribution; (5) secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by gravity wave quantum noise, could be too small. A minimal inflation parameter set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8}, is used to illustrate the power of the current data. We find the CMB+LSS+SN1 data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque) inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 = >.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred, \Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, crudely parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1 the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer

    The Sunyaev Zel'dovich effect: simulation and observation

    Get PDF
    The Sunyaev Zel'dovich effect (SZ effect) is a complete probe of ionized baryons, the majority of which are likely hiding in the intergalactic medium. We ran a 5123512^3 Λ\LambdaCDM simulation using a moving mesh hydro code to compute the statistics of the thermal and kinetic SZ effect such as the power spectra and measures of non-Gaussianity. The thermal SZ power spectrum has a very broad peak at multipole l∌2000−104l\sim 2000-10^4 with temperature fluctuations ΔT∌15ÎŒ\Delta T \sim 15\muK. The power spectrum is consistent with available observations and suggests a high σ8≃1.0\sigma_8\simeq 1.0 and a possible role of non-gravitational heating. The non-Gaussianity is significant and increases the cosmic variance of the power spectrum by a factor of ∌5\sim 5 for l<6000l<6000. We explore optimal driftscan survey strategies for the AMIBA CMB interferometer and their dependence on cosmology. For SZ power spectrum estimation, we find that the optimal sky coverage for a 1000 hours of integration time is several hundred square degrees. One achieves an accuracy better than 40% in the SZ measurement of power spectrum and an accuracy better than 20% in the cross correlation with Sloan galaxies for 2000<l<50002000<l<5000. For cluster searches, the optimal scan rate is around 280 hours per square degree with a cluster detection rate 1 every 7 hours, allowing for a false positive rate of 20% and better than 30% accuracy in the cluster SZ distribution function measurement.Comment: 34 pages, 20 figures. Submitted to ApJ. Simulation maps have been replaced by high resolution images. For higher resolution color images, please download from http://www.cita.utoronto.ca/~zhangpj/research/SZ/ We corrected a bug in our analysis. the SZ power spectrum decreases 50% and y parameter decrease 25
    • 

    corecore