4,113 research outputs found

    SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities

    Full text link
    Algorithmic complexity vulnerabilities occur when the worst-case time/space complexity of an application is significantly higher than the respective average case for particular user-controlled inputs. When such conditions are met, an attacker can launch Denial-of-Service attacks against a vulnerable application by providing inputs that trigger the worst-case behavior. Such attacks have been known to have serious effects on production systems, take down entire websites, or lead to bypasses of Web Application Firewalls. Unfortunately, existing detection mechanisms for algorithmic complexity vulnerabilities are domain-specific and often require significant manual effort. In this paper, we design, implement, and evaluate SlowFuzz, a domain-independent framework for automatically finding algorithmic complexity vulnerabilities. SlowFuzz automatically finds inputs that trigger worst-case algorithmic behavior in the tested binary. SlowFuzz uses resource-usage-guided evolutionary search techniques to automatically find inputs that maximize computational resource utilization for a given application.Comment: ACM CCS '17, October 30-November 3, 2017, Dallas, TX, US

    Phase oscillations in superfluid 3He-B weak links

    Get PDF
    Oscillations in quantum phase about a mean value of π\pi, observed across micropores connecting two \helium baths, are explained in a Ginzburg-Landau phenomenology. The dynamics arises from the Josephson phase relation,the interbath continuity equation, and helium boundary conditions. The pores are shown to act as Josephson tunnel junctions, and the dynamic variables are the inter bath phase difference and fractional difference in superfluid density at micropores. The system maps onto a non-rigid, momentum-shortened pendulum, with inverted-orientation oscillations about a vertical tilt angle ϕ=π\phi = \pi, and other modes are predicted

    Two dynamic exponents in the resistive transition of fully frustrated Josephson-junction arrays

    Full text link
    We study the resistive transition in Josephson-junction arrays at f=1/2f=1/2 flux quantum per plaquette by dynamical simulations of the resistively-shunted-junction model. The current-voltage scaling and critical dynamics of the phases are found to be well described by the same critical temperature and static exponents as for the chiral (vortex-lattice) transition. Although this behavior is consistent with a single transition scenario, where phase and chiral variables order simultaneously, two different dynamic exponents result for phase coherence and chiral order.Comment: 4 pages, 3 figures, to appear in Europhysics Letter

    Re-equilibration after quenches in athermal martensites:Conversion-delays for vapour to liquid domain-wall phases

    Full text link
    Entropy barriers and ageing states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and ageing harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, non-activated delay time for seeded parent-phase austenite to convert to product-phase martensite, arises from an identified entropy barrier in Fourier space. In an ageing state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways, to enter a Brillouin zone `golf hole' enclosing negative energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.Comment: 11 pages, 12 figures. Under process with Phys. Rev. B (2015

    Theoretical calculations of radiant heat transfer properties of particle-seeded gases

    Get PDF
    Radiant heat transfer properties of particle seeded gases, including absorption and scattering characteristics of carbon, silicon, and tungste

    Indications of superconductivity in doped highly oriented pyrolytic graphite

    Full text link
    We have observed possible superconductivity using standard resistance vs. temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic Graphite. The onset appears to be above 100 K and quenching by an applied magnetic field has been observed. The four initial boron implanted samples showed no signs of becoming superconductive whereas all four initial and eight subsequent samples that were implanted with phosphorous showed at least some sign of the existence of small amounts of the possibly superconducting phases. The observed onset temperature is dependent on both the number of electron donors present and the amount of damage done to the graphene sub-layers in the Highly Oriented Pyrolytic Graphite samples. As a result the data appears to suggest that the potential for far higher onset temperatures in un-damaged doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section was correcte
    • …
    corecore