191 research outputs found
Formal conserved quantities for isothermic surfaces
Isothermic surfaces in are characterised by the existence of a pencil
of flat connections. Such a surface is special of type if there
is a family of -parallel sections whose dependence on the
spectral parameter is polynomial of degree . We prove that any
isothermic surface admits a family of -parallel sections which is a
formal Laurent series in . As an application, we give conformally invariant
conditions for an isothermic surface in to be special.Comment: 13 page
Generalizing the autonomous Kepler Ermakov system in a Riemannian space
We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov
dynamical system to three dimensions using the sl(2,R) invariance of Noether
symmetries and determine all three dimensional autonomous Hamiltonian Kepler
Ermakov dynamical systems which are Liouville integrable via Noether
symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in
a Riemannian space which admits a gradient homothetic vector by the
requirements (a) that it admits a first integral (the Riemannian Ermakov
invariant) and (b) it has sl(2,R) invariance. We consider both the
non-Hamiltonian and the Hamiltonian systems. In each case we compute the
Riemannian Ermakov invariant and the equations defining the dynamical system.
We apply the results in General Relativity and determine the autonomous
Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman
Robertson Walker spacetime. We consider a locally rotational symmetric (LRS)
spacetime of class A and discuss two cosmological models. The first
cosmological model consists of a scalar field with exponential potential and a
perfect fluid with a stiff equation of state. The second cosmological model is
the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both
applications the gravitational field equations reduce to those of the
generalized autonomous Riemannian Kepler Ermakov dynamical system which is
Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page
Billiard algebra, integrable line congruences, and double reflection nets
The billiard systems within quadrics, playing the role of discrete analogues
of geodesics on ellipsoids, are incorporated into the theory of integrable
quad-graphs. An initial observation is that the Six-pointed star theorem, as
the operational consistency for the billiard algebra, is equivalent to an
integrabilty condition of a line congruence. A new notion of the
double-reflection nets as a subclass of dual Darboux nets associated with
pencils of quadrics is introduced, basic properies and several examples are
presented. Corresponding Yang-Baxter maps, associated with pencils of quadrics
are defined and discussed.Comment: 18 pages, 8 figure
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
Curvature-direction measures of self-similar sets
We obtain fractal Lipschitz-Killing curvature-direction measures for a large
class of self-similar sets F in R^d. Such measures jointly describe the
distribution of normal vectors and localize curvature by analogues of the
higher order mean curvatures of differentiable submanifolds. They decouple as
independent products of the unit Hausdorff measure on F and a self-similar
fibre measure on the sphere, which can be computed by an integral formula. The
corresponding local density approach uses an ergodic dynamical system formed by
extending the code space shift by a subgroup of the orthogonal group. We then
give a remarkably simple proof for the resulting measure version under minimal
assumptions.Comment: 17 pages, 2 figures. Update for author's name chang
On Some Classes of mKdV Periodic Solutions
We obtain exact periodic solutions of the positive and negative modified
Kortweg-de Vries (mKdV) equations. We examine the dynamical stability of these
solitary wave lattices through direct numerical simulations. While the positive
mKdV breather lattice solutions are found to be unstable, the two-soliton
lattice solution of the same equation is found to be stable. Similarly, a
negative mKdV lattice solution is found to be stable. We also touch upon the
implications of these results for the KdV equation.Comment: 8 pages, 3 figures, to appear in J. Phys.
Breather lattice and its stabilization for the modified Korteweg-de Vries equation
We obtain an exact solution for the breather lattice solution of the modified
Korteweg-de Vries (MKdV) equation. Numerical simulation of the breather lattice
demonstrates its instability due to the breather-breather interaction. However,
such multi-breather structures can be stabilized through the concurrent
application of ac driving and viscous damping terms.Comment: 6 pages, 3 figures, Phys. Rev. E (in press
Lattice and q-difference Darboux-Zakharov-Manakov systems via -dressing method
A general scheme is proposed for introduction of lattice and q-difference
variables to integrable hierarchies in frame of -dressing
method . Using this scheme, lattice and q-difference Darboux-Zakharov-Manakov
systems of equations are derived. Darboux, B\"acklund and Combescure
transformations and exact solutions for these systems are studied.Comment: 8 pages, LaTeX, to be published in J Phys A, Letters
Vectorial Ribaucour Transformations for the Lame Equations
The vectorial extension of the Ribaucour transformation for the Lame
equations of orthogonal conjugates nets in multidimensions is given. We show
that the composition of two vectorial Ribaucour transformations with
appropriate transformation data is again a vectorial Ribaucour transformation,
from which it follows the permutability of the vectorial Ribaucour
transformations. Finally, as an example we apply the vectorial Ribaucour
transformation to the Cartesian background.Comment: 12 pages. LaTeX2e with AMSLaTeX package
Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues
Advances in single-cell antibody cloning methods have led to the identification of a variety of broadly neutralizing anti–HIV-1 antibodies. We developed a computational tool (Antibody Database) to help identify critical residues on the HIV-1 envelope protein whose natural variation affects antibody activity. Our simplifying assumption was that, for a given antibody, a significant portion of the dispersion of neutralization activity across a panel of HIV-1 strains is due to the amino acid identity or glycosylation state at a small number of specific sites, each acting independently. A model of an antibody’s neutralization IC_(50) was developed in which each site contributes a term to the logarithm of the modeled IC_(50). The analysis program attempts to determine the set of rules that minimizes the sum of the residuals between observed and modeled IC_(50) values. The predictive quality of the identified rules may be assessed in part by whether there is support for rules within individual viral clades. As a test case, we analyzed antibody 8ANC195, an anti-glycoprotein gp120 antibody of unknown specificity. The model for this antibody indicated that several glycosylation sites were critical for neutralization. We evaluated this prediction by measuring neutralization potencies of 8ANC195 against HIV-1 in vitro and in an antibody therapy experiment in humanized mice. These experiments confirmed that 8ANC195 represents a distinct class of glycan-dependent anti–HIV-1 antibody and validated the utility of computational analysis of neutralization panel data
- …