37,353 research outputs found

    Speckle interferometry

    Get PDF
    We have presented the basic mathematical treatment of interferometry in the optical domain. Its applications in astronomical observations using both the single aperture, as well as the diluted apertures are described in detail. We have also described about the shortcomings of this technique in the presence of Earth's atmosphere. A short descriptions of the atmospheric turbulence and its effect on the flat wavefront from a stellar source is given. The formation of speckle which acts as carrier of information is defined. Laboratory experiments with phase modulation screens, as well as the resultant intensity distributions due to point source are demonstrated. The experimental method to freeze the speckles, as well as data processing techniques for both Fourier modulus and Fourier phase are described. We have also discussed the technique of the aperture synthesis using non-redundant aperture masks at the pupil plane of the telescope, emphasizing set on the comparison with speckle interferometry. The various methods of image restoration and their comparisons are also discussed. Finally, we have touched upon certain astrophysical problems which can be tackled with the newly developed speckle interferometer using the 2.34 meter Vainu Bappu Telescope (VBT), situated at the Vainu Bappu Observatory (VBO), Kavalur, India.Comment: 32 pages tex files including figure

    Pixelated Lenses and H_0 from Time-delay QSOs

    Get PDF
    Observed time delays between images of a lensed QSO lead to the determination of the Hubble constant by Refsdal's method, provided the mass distribution in the lensing galaxy is reasonably well known. Since the two or four QSO images usually observed are woefully inadequate by themselves to provide a unique reconstruction of the galaxy mass, most previous reconstructions have been limited to simple parameterized models, which may lead to large systematic errors in the derived H_0 by failing to consider enough possibilities for the mass distribution of the lens. We use non-parametric modeling of galaxy lenses to better explore physically plausible but not overly constrained galaxy mass maps, all of which reproduce the lensing observables exactly, and derive the corresponding distribution of H_0's. Blind tests - where one of us simulated galaxy lenses, lensing observables, and a value for H_0, and the other applied our modeling technique to estimate H_0 indicate that our procedure is reliable. For four simulated lensed QSOs the distribution of inferred H_0 have an uncertainty of \simeq 10% at 90% confidence. Application to published observations of the two best constrained time-delay lenses, PG1115+080 and B1608+656, yields H_0=61 +/- 11 km/s/Mpc at 68% confidence and 61 +/- 18 km/s/Mpc at 90% confidence.Comment: 27 pages, including 17 figs, LaTeX; accepted to A

    Laser heterodyne system for obtaining height profiles of minor species in the atmosphere

    Get PDF
    An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented

    Phases and collective modes of Rydberg atoms in an optical lattice

    Full text link
    We chart out the possible phases of laser driven Rydberg atoms in the presence of a hypercubic optical lattice. We define a pseudospin degree of freedom whose up(down) components correspond to the excited(ground) states of the Rydberg atoms and use them to demonstrate the realization of a canted Ising antiferromagnetic (CIAF) Mott phase of the atoms in these systems. We also show that on lowering the lattice depth, the quantum melting of the CIAF and density-wave (DW) Mott states (which are also realized in these systems) leads to supersolid (SS) phases of the atoms. We provide analytical expressions for the phase boundaries and collective excitations of these phases in the hardcore limit within mean-field theory and discuss possible experiments to test our theory.Comment: v1; 4pg 4 figs + supplementary material

    Emergent Universe with particle production

    Full text link
    The possibility of an emergent universe solution to Einstein's field equations allowing for an irreversible creation of matter at the expense of the gravitational field is shown. With the universe being chosen as spatially flat FRW spacetime together with equation of state proposed in [17], the solution exists when the ratio of the phenomenological matter creation rate to the number density times the Hubble parameter is a number β\beta of the order of unity and independent of time. The thermodynamic behaviour is also determined for this solution. Interestingly, we also find that an emergent universe scenario is present with usual equation of state in cosmology when the matter creation rate is chosen to be a constant. More general class of emergent universe solutions are also discussed.Comment: Addition made in the Acknowledgemen
    corecore