283,180 research outputs found

    Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Full text link
    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting errors and misprint correcte

    Mapping experiment with space station

    Get PDF
    Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems

    The meteorological effects on microwave apparent temperatures looking downward over a smooth sea

    Get PDF
    The effects of clouds and rain on microwave apparent temperatures for a flat sea surface are examined. The presence of clouds and rain can be expressed as a change of absorption coefficient and the total absorption is computed as the sum of individual effects. Various cloud and rain models proposed by meteorologists are employed to compute the microwave apparent temperature when viewing downward through these model atmospheres. It is shown that stratus, cumulus, overcast, and rain all contribute significantly to the observed temperature. Larger sensitivities to clouds and rain are observed for horizontally polarized apparent temperature at large nadir angles than for vertically polarized apparent temperature

    Natural Dirac Neutrinos from Warped Extra Dimension

    Full text link
    Dirac neutrinos arising from gauged discrete symmetry \`a la Krauss-Wilczek are implemented in the minimal custodial Randall-Sundrum model. In the case of a normal hierarchy, all lepton masses and mixing pattern can be naturally reproduced at the TeV scale set by the electroweak constraints, while simultanously satisfy bounds from lepton flavour violation. A nonzero neutrino mixing angle, θ13\theta_{13}, is generic in the scenario, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which may be searched for at the LHC.Comment: Talk given at the 2nd Young Researchers Workshop "Physics Challenges in the LHC Era", Frascati, May 10 and 13, 2010, 6 page

    Dopant site selectivity in BaCe0.85M0.15O3-δ by extended x-ray absorption fine structure

    Get PDF
    Rare earth doped BaCeO3 has been widely investigated as a proton conducting material. Trivalent dopants are generally assumed to fully occupy the Ce4+-site, and thereby introduce oxygen vacancies into the perovskite structure. Recent studies indicate the possibility of partial dopant incorporation onto the Ba2+-site concomitant with BaO evaporation, reducing the oxygen vacancy content. Because proton incorporation requires, as a first step, the generation of oxygen vacancies such dopant partitioning is detrimental to protonic conductivity. A quantitative Extended X-ray Absorption Fine Structure (EXAFS) study of BaCe0.85M0.15O3-δ (M=Yb,Gd) is presented here along with complementary x-ray powder diffraction and electron probe chemical analyses. The EXAFS results demonstrate that as much as 4.6% of the ytterbium and 7.2% of the gadolinium intended for incorporation onto the Ce site, in fact, resides on the Ba site. The results are in qualitative agreement with the diffraction and chemical analyses, which additionally show an even greater extent of Nd incorporation on the Ba site

    Estimation of the basic reproductive number and mean serial interval of a novel pathogen in a small, well-observed discrete population

    Get PDF
    BACKGROUND:Accurately assessing the transmissibility and serial interval of a novel human pathogen is public health priority so that the timing and required strength of interventions may be determined. Recent theoretical work has focused on making best use of data from the initial exponential phase of growth of incidence in large populations. METHODS:We measured generational transmissibility by the basic reproductive number R0 and the serial interval by its mean Tg. First, we constructed a simulation algorithm for case data arising from a small population of known size with R0 and Tg also known. We then developed an inferential model for the likelihood of these case data as a function of R0 and Tg. The model was designed to capture a) any signal of the serial interval distribution in the initial stochastic phase b) the growth rate of the exponential phase and c) the unique combination of R0 and Tg that generates a specific shape of peak incidence when the susceptible portion of a small population is depleted. FINDINGS:Extensive repeat simulation and parameter estimation revealed no bias in univariate estimates of either R0 and Tg. We were also able to simultaneously estimate both R0 and Tg. However, accurate final estimates could be obtained only much later in the outbreak. In particular, estimates of Tg were considerably less accurate in the bivariate case until the peak of incidence had passed. CONCLUSIONS:The basic reproductive number and mean serial interval can be estimated simultaneously in real time during an outbreak of an emerging pathogen. Repeated application of these methods to small scale outbreaks at the start of an epidemic would permit accurate estimates of key parameters
    corecore