573 research outputs found

    Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Get PDF
    Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB) culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC) of 1000ÎŒg/mL. All extracts significantly (p≀0.003) reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 ÎŒg/mL). All plant extracts significantly (p≀0.003) reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future

    Acclimation to Elevated CO2 Increases Constitutive Glucosinolate Levels of Brassica Plants and Affects the Performance of Specialized Herbivores from Contrasting Feeding Guilds

    Get PDF
    Plants growing under elevated CO2 concentration may acclimate by modifying chemical traits. Most studies have focused on the effects of environmental change on plant growth and productivity. Potential effects on chemical traits involved in resistance, and the consequences of such effects on plant-insect interactions, have been largely neglected. Here, we evaluated the performance of two Brassica specialist herbivores from contrasting feeding guilds, the leaf-feeding Pieris brassicae and the phloem-feeding Brevicoryne brassicae, in response to potential CO2-mediated changes in primary and major secondary metabolites (glucosinolates) in Brassica oleracea. Plants were exposed to either ambient (400ppm) or elevated (800ppm) CO2 concentrations for 2, 6, or 10weeks. Elevated CO2 did not affect primary metabolites, but significantly increased glucosinolate content. The performance of both herbivores was significantly reduced under elevated CO2 suggesting that CO2-mediated increases in constitutive defense chemistry could benefit plants. However, plants with up-regulated defenses could also be subjected to intensified herbivory by some specialized herbivores, due to a chemically-mediated phagostimulatory effect, as documented here for P. brassicae larvae. Our results highlight the importance of understanding acclimation and responses of plants to the predicted increases in atmospheric CO2 concentrations and the concomitant effects of these responses on the chemically-mediated interactions between plants and specialized herbivore

    Season-Long Volatile Emissions from Peach and Pear Trees In Situ , Overlapping Profiles, and Olfactory Attraction of an Oligophagous Fruit Moth in the Laboratory

    Get PDF
    Insect herbivores that have more than one generation per year and reproduce on different host plants are confronted with substantial seasonal variation in the volatile blends emitted by their hosts. One way to deal with such variation is to respond to a specific set of compounds common to all host plants. The oriental fruit moth Cydia (=Grapholita) molesta is a highly damaging invasive pest. The stone fruit peach (Prunus persica) is its primary host, whereas pome fruits such as pear (Pyrus communis) are considered secondary hosts. In some parts of their geographic range, moth populations switch from stone to pome fruit orchards during the growing season. Here, we tested whether this temporal switch is facilitated by female responses to plant volatiles. We collected volatiles from peach and pear trees in situ and characterized their seasonal dynamics by gas chromatography-mass spectrometry. We also assessed the effects of the natural volatile blends released by the two plant species on female attraction by using Y-tube olfactometry. Finally, we related variations in volatile emissions to female olfactory responses. Our results indicate that the seasonal host switch from peach to pear is facilitated by the changing olfactory effect of the natural volatile blends being emitted. Peach volatiles were only attractive early and mid season, whereas pear volatiles were attractive from mid to late season. Blends from the various attractive stages shared a common set of five aldehydes, which are suggested to play an essential role in female attraction to host plants. Particular attention should be given to these aldehydes when designing candidate attractants for oriental fruit moth female

    The new solo-siro spun process for worsted yarns

    Full text link
    The aim of this paper was to explore whether the properties of worsted yarns, especially hairiness, can be improved by combining the Solospun and Sirospun processes into a single Solo-Siro spun process. Wool fibres of 19 and 21 &mu;m in average diameter were spun into 40 tex yarns at different twist levels, using the conventional ring, Sirospun and Solo-Siro spun systems, respectively. These yarns were then tested for a range of properties, including hairiness, tenacity, elongation and evenness, for comparison purposes. The statistical analysis results indicate that the hairiness (S3 value) of Solo-Siro spun yarns was significantly less than that of both Sirospun and normal ring spun yarns. In addition, the tenacity of the Solo-Siro spun yarns was higher than that of the normal ring spun yarns, while changes in yarn breaking elongation were not statistically significant. For the 21 &mu;m wool, it was found that the evenness of Solo-Siro spun yarns deteriorated slightly in comparison with that of Sirospun and conventional ring spun yarns. <br /

    Variation in Attraction to Host Plant Odors in an Invasive Moth Has a Genetic Basis and is Genetically Negatively Correlated with Fecundity

    Get PDF
    Lepidopteran insects are major pests of agricultural crops, and mated female moths exploit plant volatiles to locate suitable hosts for oviposition. We investigated the heritability of odor-guided host location behavior and fecundity in the cosmopolitan oriental fruit moth Grapholita (Cydia) molesta, an oligophagous herbivore that attacks fruit trees. We used a full-sib/half-sib approach to estimate the heritability and the genetic correlation between these two traits. Results document a considerable genetic basis for olfactory attraction of females (h 2 =0.37±0.17) and their fecundity (h 2 =0.32±0.13), as well as a genetic trade-off between female attraction and fecundity (r g =−0.85±0.21). These estimations were empirically corroborated by comparing two strains maintained in the laboratory for different numbers of generations. The long-term reared strain lost its olfactory discrimination ability but achieved significantly higher fecundity compared with the short-term reared strain. Our results highlight that genetic studies are relevant for understanding the evolution of odor-guided behavior in herbivore insects and for judging the promise of pest management strategies involving behavioral manipulation with plant volatile

    Salvia spp. Essential oils against the arboviruses vector aedes albopictus (diptera: Culicidae): Bioactivity, composition, and sensorial profile—stage 1

    Get PDF
    Mosquito-borne arboviruses diseases cause a substantial public health burden within their expanding range. To date, their control relies on synthetic insecticides and repellents aimed to control the competent mosquito vectors. However, their use is hampered by their high economic, environmental, and human health impacts. Natural products may represent a valid eco-friendly alternative to chemical pesticides to control mosquitoes, and mosquito-borne parasitic diseases. The aim of this work was to combine the chemical and sensorial profiles with the bioactivity data of Salvia spp. essential oils (EOs) to select the most suitable EO to be used as a repellent and insecticide against the invasive mosquito Aedes albopictus (Diptera: Culicidae), vector of pathogens and parasites, and to describe the EOs smell profile. To do this, the EOs of four Salvia species, namely S. dolomitica, S. dorisiana, S. sclarea, and S. somalensis were extracted, chemically analyzed and tested for their bioactivity as larvicides and repellents against Ae. albopictus. Then, the smell profiles of the EOs were described by a panel of assessors. The LC50 of the EOs ranged from 71.08 to 559.77 ”L L−1 for S. dorisiana and S. sclarea, respectively. S. sclarea EO showed the highest repellence among the tested EOs against Ae. albopictus females (RD95 = 12.65 nL cm−2), while the most long-lasting, at the dose of 20 nL cm−2, was S. dorisiana (Complete Protection Time = 43.28 ± 3.43 min). S. sclarea EO showed the best smell profile, while S. dolomitica EO the worst one with a high number of off-flavors. Overall, all the EOs, with the exception of the S. dolomitica one, were indicated as suitable for “environmental protection”, while S. dorisiana and S. sclarea were indicated as suitable also for “Body care”

    Removal of Cadmium(II) Onto Granular Activated Carbon And Kaolinite Using Batch Adsorption

    Get PDF
    The removal of Cd(II) onto granular activated carbon (GAC) and kaolinite in singlecomponent systems has been studied using batch adsorption. Batch adsorption studied werecarried out under various amount of GAC and Kaolinite, Cd(II) ion concentration, pH andcontact time. The experimental data was analyzed by Langmuir, Freundlich and Redlich-Peterson isotherms. The equilibrium adsorption capacity of Cd(II) was determined fromLangmuir isotherm equation and found to be 3.002 mg/g for GAC and 1.837 mg/g forkaolinite. Pore diffusion model for batch adsorption is used to predict the concentrationdecaycurve for adsorption of Cd(II) onto GAC and kaolinite

    Helichrysum araxinum Takht. ex Kirp. grown in Italy: Volatiloma composition and in vitro antimicrobial activity

    Get PDF
    In the present work the composition of biogenic volatile organic compounds (BVOCs) and the essential oil (EO) of Helichrysum araxinum Takht. ex Kirp. aerial parts, together with the antimicrobial activity, were investigated. The results showed the prevalence of sesquiterpene hydrocarbons in both spontaneous emissions as well as in the EO. The main compounds of BVOCs were Îł-curcumene (10.7%), Îł-muurolene (9.2%), and ÎČ-selinene (8.5%). This latter constituent also showed a similar amount in the EO and represented the most abundant compounds together with α-selinene (8.0%). It is Interesting to note the same percentage of monoterpene hydrocarbons (MHs) in both the aroma profile and the EO (18.0%) with the same most abundant compounds: ÎČ-pinene (6.3% in BVOCs vs. 5.1% in EO, respectively) and limonene (4.5% in VOCs vs. 4.9% in EO, respectively). With regard to the antimycotic activity, the EO showed to be inactive against the tested strains, while a moderate antibacterial activity was shown against Staphylococcus isolates
    • 

    corecore