25,849 research outputs found

    Utilizing rapid prototyping 3D printer for fabricating flexographic PDMS printing plate

    Get PDF
    Recently printed electronic field is significantly growth. Printed electronic is to develop electrical devices by printing method. Conventional printing method that has been studied for this kind of printed electronic such as flexographic, micro contact printing, screen printing, gravure and ink jet. In flexographic and microcontact printing, a printing plate is used to transfer the designed and desired pattern to substrate through conformed contact. Therefore printing plate is play a big role in this area. Printing plate making by photopolymer which used in flexographic have limitation in achieving a micro-scale of pattern size. However, printing plate of microcontact printing have an advantages in producing micro, even nano-scale size by PDMS (Polydimethylsiloxane). Hence, rapid prototyping 3D printer was used for developing a PDMS micro-scale printing plate which will be used in reel to reel (R2R) flexographic due to high speed, low cost, mass production of this type of printing process. The flexibility of 3D printer in producing any shape of pattern easily, contributed the success of this study. A nickel plating and glass etching master pattern was used in this study too as master pattern mould since 3D printer has been reached the micro size limitation. The finest multiple solid line array with 1mm width and 2mm gap pattern of printing plate was successfully fabricated by 3D printer master mould due to size limitation of the FDM (Fused Deposition Modeling) 3D printer nozzle itself. However, the micro-scale multiple solid line array of 100micron and 25micron successfully made by nikel platting and glass etching master mould respectively. Those types of printing plate producing method is valueable since it is easy, fast and low cost, used for micro-flexographic in printed electronic field or biomedical application

    Competition between charge and spin order in the t−U−Vt-U-V extended Hubbard model on the triangular lattice

    Full text link
    Several new classes of compounds can be modeled in first approximation by electrons on the triangular lattice that interact through on-site repulsion UU as well as nearest-neighbor repulsion VV. This extended Hubbard model on a triangular lattice has been studied mostly in the strong coupling limit for only a few types of instabilities. Using the extended two-particle self consistent approach (ETPSC), that is valid at weak to intermediate coupling, we present an unbiased study of the density and interaction dependent crossover diagram for spin and charge density wave instabilities of the normal state at arbitrary wave vector. When UU dominates over VV and electron filling is large, instabilities are chiefly in the spin sector and are controlled mostly by Fermi surface properties. Increasing VV eventually leads to charge instabilities. In the latter case, it is mostly the wave vector dependence of the vertex that determines the wave vector of the instability rather than Fermi surface properties. At small filling, non-trivial instabilities appear only beyond the weak coupling limit. There again, charge density wave instabilities are favored over a wide range of dopings by large VV at wave vectors corresponding to (3)×(3)\sqrt(3) \times \sqrt(3) superlattice in real space. Commensurate fillings do not play a special role for this instability. Increasing UU leads to competition with ferromagnetism. At negative values of UU or VV, neglecting superconducting fluctuations, one finds that charge instabilities are favored. In general, the crossover diagram presents a rich variety of instabilities. We also show that thermal charge-density wave fluctuations in the renormalized classical regime can open a pseudogap in the single-particle spectral weight, just as spin or superconducting fluctuations

    Semiclassical Hartree-Fock theory of a rotating Bose-Einstein condensation

    Full text link
    In this paper, we investigate the thermodynamic behavior of a rotating Bose-Einstein condensation with non-zero interatomic interactions theoretically. The analysis relies on a semiclassical Hartree-Fock approximation where an integral is performed over the phase space and function of the grand canonical ensemble is derived. Subsequently, we use this result to derive several thermodynamic quantities including the condensate fraction, critical temperature, entropy and heat capacity. Thereby, we investigate the effect of the rotation rate and interactions parameter on the thermodynamic behavior. The role of finite size is discussed. Our approach can be extended to consider the rotating condensate in optical potential

    Invariance of quantum correlations under local channel for a bipartite quantum state

    Full text link
    We show that the quantum discord and the measurement induced non-locality (MiN) in a bipartite quantum state is invariant under the action of a local quantum channel if and only if the channel is invertible. In particular, these quantities are invariant under a local unitary channel.Comment: 4 pages, no figures, proof of theorm 2 modifie
    • …
    corecore