696 research outputs found

    Poisson noise induced switching in driven micromechanical resonators

    Full text link
    We study Poisson-noise induced switching between coexisting vibrational states in driven nonlinear micromechanical resonators. In contrast to Gaussian noise induced switching, the measured logarithm of the switching rate is proportional not to the reciprocal noise intensity, but to its logarithm, for fixed pulse area. We also find that the switching rate logarithm varies as a square root of the distance to the bifurcation point, instead of the conventional scaling with exponent 3/2.Comment: accepted by PR

    Spectrum of an oscillator with jumping frequency and the interference of partial susceptibilities

    Full text link
    We study an underdamped oscillator with shot-noise frequency fluctuations. The oscillator spectrum is determined by the interference of the susceptibilities for different eigenfrequencies. Depending on the parameters, it has a fine structure or displays a single asymmetric peak. For nano-mechanical resonators with a fluctuating number of attached molecules, the spectrum is found in a simple analytical form. The results bear on various types of systems where the reciprocal correlation time of frequency fluctuations can be comparable to the typical frequency jumps

    Exponential peak and scaling of work fluctuations in modulated systems

    Full text link
    We extend the stationary-state work fluctuation theorem to periodically modulated nonlinear systems. Such systems often have coexisting stable periodic states. We show that work fluctuations sharply increase near a kinetic phase transition where the state populations are close to each other. The work variance is proportional here to the reciprocal rate of interstate switching. We also show that the variance displays scaling with the distance to a bifurcation point and find the critical exponent for a saddle-node bifurcation

    Laser-like Instabilities in Quantum Nano-electromechanical Systems

    Full text link
    We discuss negative damping regimes in quantum nano-electromechanical systems formed by coupling a mechanical oscillator to a single-electron transistor (normal or superconducting). Using an analogy to a laser with a tunable atom-field coupling, we demonstrate how these effects scale with system parameters. We also discuss the fluctuation physics of both the oscillator and the single-electron transistor in this regime, and the degree to which the oscillator motion is coherent.Comment: 4+ pages, 1 figure; reference to the work of Dykman and Krivoglaz adde

    Cooling and squeezing via quadratic optomechanical coupling

    Full text link
    We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator. We derive an effective master equation describing two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-state phonon number distribution is non-thermal (Gaussian) and that even for strong cooling the mean phonon number remains finite. Moreover, we demonstrate how to achieve mechanical squeezing by driving the cavity with two beams. Finally, we calculate the optical output and squeezing spectra. Implications for optomechanics experiments with the membrane-in-the-middle geometry or ultracold atoms in optical resonators are discussed.Comment: 4 pages, 3 figure

    Quasienergy description of the driven Jaynes-Cummings model

    Full text link
    We analyze the driven resonantly coupled Jaynes-Cummings model in terms of a quasienergy approach by switching to a frame rotating with the external modulation frequency and by using the dressed atom picture. A quasienergy surface in phase space emerges whose level spacing is governed by a rescaled effective Planck constant. Moreover, the well-known multiphoton transitions can be reinterpreted as resonant tunneling transitions from the local maximum of the quasienergy surface. Most importantly, the driving defines a quasienergy well which is nonperturbative in nature. The quantum mechanical quasienergy state localized at its bottom is squeezed. In the Purcell limited regime, the potential well is metastable and the effective local temperature close to its minimum is uniquely determined by the squeezing factor. The activation occurs in this case via dressed spin flip transitions rather than via quantum activation as in other driven nonlinear quantum systems such as the quantum Duffing oscillator. The local maximum is in general stable. However, in presence of resonant coherent or dissipative tunneling transitions the system can escape from it and a stationary state arises as a statistical mixture of quasienergy states being localized in the two basins of attraction. This gives rise to a resonant or an antiresonant nonlinear response of the cavity at multiphoton transitions. The model finds direct application in recent experiments with a driven superconducting circuit QED setup.Comment: 13 pages, 8 fi

    Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics

    Get PDF
    This paper develops the theoretical foundations for the ability of a control field to cooperate with noise in the manipulation of quantum dynamics. The noise enters as run-to-run variations in the control amplitudes, phases and frequencies with the observation being an ensemble average over many runs as is commonly done in the laboratory. Weak field perturbation theory is developed to show that noise in the amplitude and frequency components of the control field can enhance the process of population transfer in a multilevel ladder system. The analytical results in this paper support the point that under suitable conditions an optimal field can cooperate with noise to improve the control outcome.Comment: submitted to Phys. Rev.

    Dynamical multistability in high-finesse micromechanical optical cavities

    Full text link
    We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a flexible mechanical element. We find that this system is governed by an array of dynamical attractors, which arise from phase-locking between the mechanical oscillations of the mirror and the ringing of the light intensity in the cavity. We describe an analytical approximation to map out the diagram of attractors in parameter space, derive the slow amplitude dynamics of the system, including thermally activated hopping between different attractors, and suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.Comment: 5 pages, 4 figure

    Momentum average approximation for models with electron-phonon coupling dependent on the phonon momentum

    Full text link
    We generalize the momentum average (MA) approximation to study the properties of models with momentum-dependent electron-phonon coupling. As in the case of the application of the original MA to the Holstein model, the results are analytical, numerically trivial to evaluate, exact for both zero bandwidth and for zero electron-phonon coupling, and are accurate everywhere in parameter space. Comparison with available numerical data confirms this accuracy. We then show that further improvements can be obtained based on variational considerations, using the one-dimensional breathing-mode Hamiltonian as a specific example. For example, by using this variational MA, we obtain ground state energies within at most 0.3% error of the numerical data.Comment: 15 pages, 10 figure
    • …
    corecore