3,135 research outputs found

    Length scales, collective modes, and type-1.5 regimes in three-band superconductors

    Full text link
    The recent discovery of iron pnictide superconductors has resulted in a rapidly growing interest in multiband models with more than two bands. In this work we specifically focus on the properties of three-band Ginzburg-Landau models which do not have direct counterparts in more studied two-band models. First we derive normal modes and characteristic length scales in the conventional U(1) three-band Ginzburg-Landau model as well as in its time reversal symmetry broken counterpart with U(1)×Z2U(1)\times Z_2 symmetry. We show that in the latter case, the normal modes are mixed phase/density collective excitations. A possibility of the appearance of a massless phase-difference mode associated with fluctuations of the phase difference is also discussed. Next we show that gradients of densities and phase differences can be inextricably intertwined in vortex excitations in three-band models. This can lead to very long-range attractive intervortex interactions and appearance of type-1.5 regimes even when the intercomponent Josephson coupling is large. In some cases it also results in the formation of a domain-like structures in the form of a ring of suppressed density around a vortex across which one of the phases shifts by π\pi. We also show that field-induced vortices can lead to a change of broken symmetry from U(1) to U(1)×Z2U(1)\times Z_2 in the system. In the type-1.5 regime, it results in a semi-Meissner state where the system has a macroscopic phase separation in domains with broken U(1) and U(1)×Z2U(1)\times Z_2 symmetries.Comment: Version 3: Corrected som inconstancies in the parameter set in Fig.2 Also som minor typos corrected. No changes to results or conclusion

    Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors

    Full text link
    Non-classical response to rotation is a hallmark of quantum ordered states such as superconductors and superfluids. The rotational responses of all currently known single-component "super" states of matter (superconductors, superfluids and supersolids) are largely described by two fundamental principles and fall into two categories according to whether the systems are composed of charged or neutral particles: the London law relating the angular velocity to a subsequently established magnetic field and the Onsager-Feynman quantization of superfluid velocity. These laws are theoretically shown to be violated in a two-component superconductor such as the projected liquid metallic states of hydrogen and deuterium at high pressures. The rotational responses of liquid metallic hydrogen or deuterium identify them as a new class of dissipationless states; they also directly point to a particular experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The final version will be posted 6 months after its publication Nature Physics, according to the journal polic

    Muon-spin rotation measurements of the vortex state in Sr2_2RuO4_4: type-1.5 superconductivity, vortex clustering and a crossover from a triangular to a square vortex lattice

    Get PDF
    Muon-spin rotation has been used to probe vortex state in Sr2_2RuO4_4. At moderate fields and temperatures a lattice of triangular symmetry is observed, crossing over to a lattice of square symmetry with increasing field and temperature. At lower fields it is found that there are large regions of the sample that are completely free from vortices which grow in volume as the temperature falls. Importantly this is accompanied by {\it increasing} vortex density and increasing disorder within the vortex-cluster containing regions. Both effects are expected to result from the strongly temperature-dependent long-range vortex attractive forces arising from the multi-band chiral-order superconductivity.Comment: 13 pages, 4 figure

    Vortex matter and generalizations of dipolar superfluidity concept in layered systems

    Full text link
    In the first part of this letter we discuss electrodynamics of an excitonic condensate in a bilayer. We show that under certain conditions the system has a dominant energy scale and is described by the effective electrodynamics with "planar magnetic charges". In the second part of the paper we point out that a vortex liquid state in bilayer superconductors also possesses dipolar superfluid modes and establish equivalence mapping between this state and a dipolar excitonic condensate. We point out that a vortex liquid state in an N-layer superconductor possesses multiple topologically coupled dipolar superfluid modes and therefore represents a generalization of the dipolar superfluidity concept.Comment: v2: references added. v3: discussion extended, references adde
    • …
    corecore