537 research outputs found

    EPR measurement of Cu2+-fe2+ exchange in FeSif6 Β· 6H20 at 4.2 K

    Get PDF
    Six inequivalent Cu2+ EPR spectra were observed at 4.2 K in single crystals of FeSiF 6 β€’ 6H20. The estimated parametersgz ---2.38 and 8=40Β°, where 8 is the angle between the ionicz axis and the c axis, differ from those measured in crystals of similar structure. Thes~ differences have been explained in terms of an isotropic Cu2+ -Fe2+ exchange Hamiltonian JS1 β€’ S2, with J = + (0.030 Β± 0.003) em - 1 ' which gives a contribution gex = - 5.05 J sin2 e, where e is the angle between the external magnetic field and the z axis. Perpendicular to the c axis, an independent estimate of + 0.034 em -I for J was made from the low-field displacement of a satellite spectru

    EPR study of the Jahn-Teller effect of Cu2+ in ZnTiF6Β·6H20

    Get PDF
    The 34-GHz EPR spectrum of Cu2+ in ZnTiF6Β·6H20 shows a Jahn-Teller effect with a transition from a single-line spectrum at high temperatures to a multiline anisotropic spectrum. The transition temperature on cooling varied with Cu concentration from 172 K for a sample containing 0.2 at.% Cu to roughly 90 K for a 46-at. % Cu sample. For dilute samples, the single-line spectrum was isotropic at 300 K with g =2.223Β±0.005, but showed axial symmetry about the trigonal axis at 180 K with gj1 =2.226Β±0.005 and g~ =2.223Β±0.005. At 4.2 K, a "static" Jahn-Teller effect was observed with six axially symmetric Cu2+ spectra, each with g 11 =2.470Β±0.005, g1 =2.100Β±0.005, I A 11 I ~ I 06 X 10- 4 em -I, and I A 1 I ~30 X 10- 4 em - I. The z axis of these spectra was found to lie along the fourfold axes of two cubes with a common [Ill] axis, rotated by 40"Β±2" with respect to each other about this axis. Analysis of the 4.2-K data leads to the values q~O. 50 for the Ham reduction factor and K~O. 26 for the Fenni contact parameter, with A uA 1 < 0. An activation energy of about 100 cm-1 was deduced from the gradual increase of the anisotropy of the spectrum on cooling in the low-temperature region

    ΠœΠΎΠ³ΡƒΡ‚ Π»ΠΈ пораТСния, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Π΅ актиничСским ΠΊΠ΅Ρ€Π°Ρ‚ΠΎΠ·ΠΎΠΌ, ΡΡ‚Π°Ρ‚ΡŒ Π·Π°Π³Π°Π΄ΠΊΠΎΠΉ для Π΄Π΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΎΠ²? Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ пСрспСктивного исслСдования

    Get PDF
    Different face skin diseases (basal cell carcinoma, actinic keratosis, rosacea, solar elastosis, etc.) could clinically manifest itself as erythematic patches, pimples or plagues. It is very hard to make the clinical exclusion in some cases of these diseases since their characters can partially overlap or certain lesion can mimic another one especially in the cases of skin areas affected with sun. Therefore, the histopathological analysis remains the β€œgolden standard” of the dermatological diagnosis at skin diseases. Our study has shown that certified dermatologists detect actinic keratosis (AK) of face/head skin of I/II levels very well. Verdicts of dermatologists and pathomorfologists are congruent on account of diagnosis in 90,7% cases. Diseases clinically excluded as AK revealed as malignant neoplasms (basal cell carcinoma) in less than 1% of case lesions.Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠΆΠ½Ρ‹Π΅ заболСвания Π½Π° Π»ΠΈΡ†Π΅ (базально-клСточная ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ°, актиничСский ΠΊΠ΅Ρ€Π°Ρ‚ΠΎΠ·, Ρ€ΠΎΠ·Π°Ρ†Π΅Π°, солнСчный эластоз ΠΈ Ρ‚. Π΄.) ΠΌΠΎΠ³ΡƒΡ‚ клиничСски ΠΏΡ€ΠΎΡΠ²Π»ΡΡ‚ΡŒΡΡ ΠΊΠ°ΠΊ эритСматозныС пятна, ΠΏΠ°ΠΏΡƒΠ»Ρ‹ ΠΈΠ»ΠΈ бляшки. Иногда клиничСский Π΄ΠΈΠ°Π³Π½ΠΎΠ· Ρ‚Π°ΠΊΠΈΡ… ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΊΠΎΠΆΠΈ ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ слоТно, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΡ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ частично ΡΠΎΠ²ΠΏΠ°Π΄Π°Ρ‚ΡŒ ΠΈΠ»ΠΈ ΠΆΠ΅ ΠΎΠ΄Π½ΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠΈΠΌΠΈΠΊΡ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄ Π΄Ρ€ΡƒΠ³ΠΎΠ΅, особСнно Π² случаС пораТСния участков, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‰ΠΈΡ…ΡΡ солнСчному Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ. По этой ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ гистопатологичСский Π°Π½Π°Π»ΠΈΠ· остаСтся Π·ΠΎΠ»ΠΎΡ‚Ρ‹ΠΌ стандартом диагностики ΠΏΡ€ΠΈ ΠΊΠΎΠΆΠ½Ρ‹Ρ… заболСваниях. НашС исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ сСртифицированныС Π΄Π΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ€ΡƒΡŽΡ‚ актиничСский ΠΊΠ΅Ρ€Π°Ρ‚ΠΎΠ· (АК) I/II стСпСни Π½Π° ΠΊΠΎΠΆΠ΅ Π»ΠΈΡ†Π°/Π³ΠΎΠ»ΠΎΠ²Ρ‹. Π’ 90,7% случаСв мнСния Π΄Π΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Π° ΠΈ Π²Ρ€Π°Ρ‡Π°-ΠΏΠ°Ρ‚ΠΎΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, ΠΈ ΠΌΠ΅Π½Π΅Π΅ Ρ‡Π΅ΠΌ Π² 1% случаСв пораТСния, диагностированныС ΠΊΠ°ΠΊ АК, оказались злокачСствСнными новообразованиями (базально-клСточная ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ°)

    Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts

    Get PDF
    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.Comment: Accepted for publication by Nature Microgravity (2018

    Jahn-Teller EPA spectra of Cu2 + in MgSif6.6H20

    Get PDF
    The 34 GHz EPR spectrum ofCu2+ in MgSiF6-6H20 showed a "static" Jahn-Teller effect at 4.2 K with two inequivalent Jahn- Teller sites per unit cell. The six axially symmetric sets of Cu2+ lines had their z axes parallel to the three tetragonal axes of two cubes, which were rotated by approximately 40" with respect to each other about a common (Ill) axis, which is the crystal c axis. The measured spin-Hamiltonian parameters at 4.2 K for each set of lines were g11 = 2.47 Β± 0.01, g1 = 2.10 Β± 0.01 , and lA 11 1 = (110 Β± 3)X 10- 4 em- β€’. There was a gradual decrease in the anisotropy of the spectrum on warming the crystal, with a single, nearly isotropic line being observed above 220 K. At 270 K the spectrum had axial symmetry about the c axis with Kn = 2.23 Β± 0.01 and g~ = 2.25 Β± 0.01 . The temperature evolution of the spectrum was interpreted in terms of a Boltzmann distribution over inequivalent distorted Jahn-Teller configurations, with one potential well lowered by an amount L1:::::: I 05 em- 1 below the other two

    Π£Π—Π•Π›ΠšΠ˜ Π”ΠžΠ˜Π›Π¬Π©Π˜Π¦. Π‘Π›ΠžΠ–ΠΠžΠ‘Π’Π˜ Π’ Π˜Π”Π•ΠΠ’Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜ Π˜ΠΠ€Π•ΠšΠ¦Π˜Π™ Π”ΠžΠœΠΠ¨ΠΠ˜Π₯ Π–Π˜Π’ΠžΠ’ΠΠ«Π₯ И Π£Π“Π ΠžΠ—Π ΠŸΠΠ¦Π˜Π•ΠΠ’ΠΠœ Π‘ ΠžΠ‘Π›ΠΠ‘Π›Π•ΠΠΠ«Πœ Π˜ΠœΠœΠ£ΠΠ˜Π’Π•Π’ΠžΠœ

    Get PDF
    Milker’s nodules, also called paravaccinia, is a DNA virus transmitted from infected cows to humans. It results from contact with cattle, cattle byproducts, or fomites. Classified as an occupational disorder, those at risk of exposure include farmers, butchers, and agricultural tourists. The viral infection begins 5β€”15 days after inoculation as an erythematous-purple, round nodule with a clear depressed center, and a surrounding erythematous ring. While familiar to those in farming communities, the presence of the nodule may be concerning to others, particularly the immunosuppressed. Milker’s nodules are selflimited in immunocompetent individuals and heal without scarring within 8 weeks. Another member of the Parapoxvirus genus, the orf virus, is also transmitted from animals to humans by direct-contact. While complications are rare, hematopoietic stem cell transplant recipients are at risk of graft-versus-host disease, as the parapoxvirus may trigger these complications in immunocompromised individuals. In addition, paravaccinia may serve as the antigen source for the development of erythema multiforme. The unique structure and replication process of viruses in the Poxvirus family, while includes the Parapoxvirus genus, have been a focus for treatment of infections and cancer. Manipulation of these viruses has demonstrated promising therapeutic possibilities as vectors for vaccines and oncologic therapy.Π£Π·Π΅Π»ΠΊΠΈ Π΄ΠΎΠΈΠ»ΡŒΡ‰ΠΈΡ†, Ρ‚Π°ΠΊΠΆΠ΅ извСстныС ΠΊΠ°ΠΊ паравакциния, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ΠΌ, Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌ Π”ΠΠš-содСрТащим вирусом, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ пСрСдаСтся ΠΎΡ‚Β Π·Π°Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠ² ΠΊΒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΡƒ. ΠŸΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° происходит ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π΅ с крупным Ρ€ΠΎΠ³Π°Ρ‚Ρ‹ΠΌ скотом, Π΅Π³ΠΎ субпродуктами ΠΈΠ»ΠΈ выдСлСниями ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. РассматриваСмыС ΡƒΠ·Π΅Π»ΠΊΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, риску ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Ρ€Ρ‹, мясники и агротуристы. ВирусноС Π·Π°Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ начинаСтся Ρ‡Π΅Ρ€Π΅Π· 5β€”15 Π΄Π½Π΅ΠΉ послС инокуляции Π²Β Π²ΠΈΠ΄Π΅ Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ эритСматозного ΠΊΡ€ΡƒΠ³Π»ΠΎΠ³ΠΎ ΡƒΠ·Π΅Π»ΠΊΠ° с чСтким Π²Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Β Ρ†Π΅Π½Ρ‚Ρ€Π΅ ΠΈΒ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΠΌ Π΅Π³ΠΎ эритСматозным ΠΊΠΎΠ»ΡŒΡ†ΠΎΠΌ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, в фСрмСрских сообщСствах появлСниС ΡƒΠ·Π΅Π»ΠΊΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°Ρ‚Ρ€ΠΎΠ½ΡƒΡ‚ΡŒ и людСй с ослаблСнным ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ. Π£Π·Π΅Π»ΠΊΠΈ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ ΡƒΒ Π»ΠΈΡ† бСз ослаблСнного ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π° ΠΈΒ Π·Π°ΠΆΠΈΠ²Π°ΡŽΡ‚ Π±Π΅Π· образования Ρ€ΡƒΠ±Ρ†ΠΎΠ² Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 8 нСдСль. Π”Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒ Ρ€ΠΎΠ΄Π° ΠŸΠ°Ρ€Π°ΠΏΠΎΠΊΡΠ²ΠΈΡ€ΡƒΡΡ‹Β β€” контагиозная эктима, Ρ‚Π°ΠΊΠΆΠ΅ пСрСдаСтся ΠΎΡ‚Β ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΊΒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΡƒ ΠΏΡ€ΠΈ нСпосрСдствСнном ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π΅. ОслоТнСния Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ достаточно Ρ€Π΅Π΄ΠΊΠΎ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΡ€ΠΈ трансплантации гСмопоэтичСских стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ подвСргаСтся риску возникновСния Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ «трансплантат ΠΏΡ€ΠΎΡ‚ΠΈΠ² хозяина», а парапоксвирус ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ослоТнСния ΡƒΒ Π»ΠΈΡ† с ослаблСнным ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, паравакциния ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ источником Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π° для развития ΠΌΠ½ΠΎΠ³ΠΎΡ„ΠΎΡ€ΠΌΠ½ΠΎΠΉ эритСмы. Уникальная структура и процСсс Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ вирусов сСмСйства ΠŸΠΎΠΊΡΠ²ΠΈΡ€ΡƒΡ, Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ€ΠΎΠ΄ ΠŸΠ°Ρ€Π°ΠΏΠΎΠΊΡΠ²ΠΈΡ€ΡƒΡΡ‹, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ исслСдуСтся ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ ΠΈΒ Ρ€Π°ΠΊΠ°. Π Π°Π±ΠΎΡ‚Π° с данными вирусами ΠΎΡ‚ΠΊΡ€Ρ‹Π»Π° пСрспСктивныС тСрапСвтичСскиС возмоТности для Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π²Π°ΠΊΡ†ΠΈΠ½ и лСчСния онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ

    Single-ion and exchange anisotropy effects and multiferroic behavior in high-symmetry tetramer single molecule magnets

    Full text link
    We study single-ion and exchange anisotropy effects in equal-spin s1s_1 tetramer single molecule magnets exhibiting TdT_d, D4hD_{4h}, D2dD_{2d}, C4hC_{4h}, C4vC_{4v}, or S4S_4 ionic point group symmetry. We first write the group-invariant quadratic single-ion and symmetric anisotropic exchange Hamiltonians in the appropriate local coordinates. We then rewrite these local Hamiltonians in the molecular or laboratory representation, along with the Dzyaloshinskii-Moriay (DM) and isotropic Heisenberg, biquadratic, and three-center quartic Hamiltonians. Using our exact, compact forms for the single-ion spin matrix elements, we evaluate the eigenstate energies analytically to first order in the microscopic anisotropy interactions, corresponding to the strong exchange limit, and provide tables of simple formulas for the energies of the lowest four eigenstate manifolds of ferromagnetic (FM) and anitiferromagnetic (AFM) tetramers with arbitrary s1s_1. For AFM tetramers, we illustrate the first-order level-crossing inductions for s1=1/2,1,3/2s_1=1/2,1,3/2, and obtain a preliminary estimate of the microscopic parameters in a Ni4_4 from a fit to magnetization data. Accurate analytic expressions for the thermodynamics, electron paramagnetic resonance absorption and inelastic neutron scattering cross-section are given, allowing for a determination of three of the microscopic anisotropy interactions from the second excited state manifold of FM tetramers. We also predict that tetramers with symmetries S4S_4 and D2dD_{2d} should exhibit both DM interactions and multiferroic states, and illustrate our predictions for s1=1/2,1s_1=1/2, 1.Comment: 30 pages, 14 figures, submitted to Phys. Rev.

    Observation of the cubic-field splitting of an excited S = 2 manifold in a cubic copper tetramer

    Get PDF
    EPR measurements on single crystals of Cu40Cl6(triphenylphosphine oxide)4 at liquid helium temperatures in the frequency ranges 14-17 and 34-35 GHz were fitted to a simple cubicS= 2 spin Hamiltonian with g = 2.10 Β± 0.01 and a zero-field splitting of(0.53 Β± 0.01) em - 1 β€’ From the decrease in intensity of the S = 2 spectrum on cooling below 4.2 K and the absence of an S = 1 spectrum, the S = 2 manifold was deduced to lie ( 14 Β± 1) em- 1 above a nonmagnetic ground state. The EPR results are used as a test of the various theories developed to explain the magnetic susceptibility of copper tetramer
    • …
    corecore