72 research outputs found

    Ultrax:An Animated Midsagittal Vocal Tract Display for Speech Therapy

    Get PDF
    Speech sound disorders (SSD) are the most common communication impairment in childhood, and can hamper social development and learning. Current speech therapy interventions rely predominantly on the auditory skills of the child, as little technology is available to assist in diagnosis and therapy of SSDs. Realtime visualisation of tongue movements has the potential to bring enormous benefit to speech therapy. Ultrasound scanning offers this possibility, although its display may be hard to interpret. Our ultimate goal is to exploit ultrasound to track tongue movement, while displaying a simplified, diagrammatic vocal tract that is easier for the user to interpret. In this paper, we outline a general approach to this problem, combining a latent space model with a dimensionality reducing model of vocal tract shapes. We assess the feasibility of this approach using magnetic resonance imaging (MRI) scans to train a model of vocal tract shapes, which is animated using electromagnetic articulography (EMA) data from the same speaker. Index Terms: Ultrasound, speech therapy, vocal tract visualisation 1

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Topic-based mixture language modelling

    Get PDF
    This paper describes an approach for constructing a mixture of language models based on simple statistical notions of semantics using probabilistic models developed for information retrieval. The approach encapsulates corpus-derived semantic information and is able to model varying styles of text. Using such information, the corpus texts are clustered in an unsupervised manner and a mixture of topic-specific language models is automatically created. The principal contribution of this work is to characterise the document space resulting from information retrieval techniques and to demonstrate the approach for mixture language modelling. A comparison is made between manual and automatic clustering in order to elucidate how the global content information is expressed in the space. We also compare (in terms of association with manual clustering and language modelling accuracy) alternative term-weighting schemes and the effect of singular value decomposition dimension reduction (latent semantic analysis). Test set perplexity results using the British National Corpus indicate that the approach can improve the potential of statistical language modelling. Using an adaptive procedure, the conventional model may be tuned to track text data with a slight increase in computational cost

    On the effect of SNR and superdirective beamforming in speaker diarisation in meetings

    Get PDF
    This paper examines the effect of sensor performance on speaker diarisation in meetings and investigates the use of more advanced beamforming techniques, beyond the typically employed delay-sum beamformer, for mitigating the effects of poorer sensor performance. We present superdirective beamforming and investigate how different time difference of arrival (TDOA) smoothing and beamforming techniques influence the performance of state-of-the-art diarisation systems. We produced and transcribed a new corpus of meetings recorded in the instrumented meeting room using a high SNR analogue and a newly developed low SNR digital MEMS microphone array (DMMA.2). This research demonstrates that TDOA smoothing has a significant effect on the diarisation error rate and that simple noise reduction and beamforming schemes suffice to overcome audio signal degradation due to the lower SNR of modern MEMS microphones. Index Terms — Speaker diarisation in meetings, digital MEMS microphone array, time difference of arrival (TDOA), superdirective beamforming 1

    Speech and crosstalk detection in multichannel audio

    Get PDF
    The analysis of scenarios in which a number of microphones record the activity of speakers, such as in a round-table meeting, presents a number of computational challenges. For example, if each participant wears a microphone, speech from both the microphone's wearer (local speech) and from other participants (crosstalk) is received. The recorded audio can be broadly classified in four ways: local speech, crosstalk plus local speech, crosstalk alone and silence. We describe two experiments related to the automatic classification of audio into these four classes. The first experiment attempted to optimize a set of acoustic features for use with a Gaussian mixture model (GMM) classifier. A large set of potential acoustic features were considered, some of which have been employed in previous studies. The best-performing features were found to be kurtosis, "fundamentalness," and cross-correlation metrics. The second experiment used these features to train an ergodic hidden Markov model classifier. Tests performed on a large corpus of recorded meetings show classification accuracies of up to 96%, and automatic speech recognition performance close to that obtained using ground truth segmentation

    Processing and Linking Audio Events in Large Multimedia Archives: The EU inEvent Project

    Get PDF
    In the inEvent EU project [1], we aim at structuring, retrieving, and sharing large archives of networked, and dynamically changing, multimedia recordings, mainly consisting of meetings, videoconferences, and lectures. More specifically, we are developing an integrated system that performs audiovisual processing of multimedia recordings, and labels them in terms of interconnected “hyper-events ” (a notion inspired from hyper-texts). Each hyper-event is composed of simpler facets, including audio-video recordings and metadata, which are then easier to search, retrieve and share. In the present paper, we mainly cover the audio processing aspects of the system, including speech recognition, speaker diarization and linking (across recordings), the use of these features for hyper-event indexing and recommendation, and the search portal. We present initial results for feature extraction from lecture recordings using the TED talks. Index Terms: Networked multimedia events; audio processing: speech recognition; speaker diarization and linking; multimedia indexing and searching; hyper-events. 1

    Lightly supervised automatic subtitling of weather forecasts

    Get PDF
    Since subtitling television content is a costly process, there are large potential advantages to automating it, using automatic speech recognition (ASR). However, training the necessary acoustic models can be a challenge, since the available training data usually lacks verbatim orthographic transcriptions. If there are approximate transcriptions, this problem can be overcome using light supervision methods. In this paper, we perform speech recognition on broadcasts of Weatherview, BBC’s daily weather report, as a first step towards automatic subtitling. For training, we use a large set of past broadcasts, using their manually created subtitles as approximate transcriptions. We discuss and and compare two different light supervision methods, applying them to this data. The best training set finally obtained with these methods is used to create a hybrid deep neural networkbased recognition system, which yields high recognition accuracies on three separate Weatherview evaluation sets

    Multilingual training of deep neural networks

    Get PDF
    We investigate multilingual modeling in the context of a deep neural network (DNN) – hidden Markov model (HMM) hy-brid, where the DNN outputs are used as the HMM state like-lihoods. By viewing neural networks as a cascade of fea-ture extractors followed by a logistic regression classifier, we hypothesise that the hidden layers, which act as feature ex-tractors, will be transferable between languages. As a corol-lary, we propose that training the hidden layers on multiple languages makes them more suitable for such cross-lingual transfer. We experimentally confirm these hypotheses on the GlobalPhone corpus using seven languages from three dif-ferent language families: Germanic, Romance, and Slavic. The experiments demonstrate substantial improvements over a monolingual DNN-HMM hybrid baseline, and hint at av-enues of further exploration. Index Terms — Speech recognition, deep learning, neural networks, multilingual modelin
    corecore