151 research outputs found

    Nonlinear Stability in Fluids and Plasmas

    Get PDF
    N/

    The geometry and analysis of the averaged Euler equations and a new diffeomorphism group

    Full text link
    We present a geometric analysis of the incompressible averaged Euler equations for an ideal inviscid fluid. We show that solutions of these equations are geodesics on the volume-preserving diffeomorphism group of a new weak right invariant pseudo metric. We prove that for precompact open subsets of Rn{\mathbb R}^n, this system of PDEs with Dirichlet boundary conditions are well-posed for initial data in the Hilbert space HsH^s, s>n/2+1s>n/2+1. We then use a nonlinear Trotter product formula to prove that solutions of the averaged Euler equations are a regular limit of solutions to the averaged Navier-Stokes equations in the limit of zero viscosity. This system of PDEs is also the model for second-grade non-Newtonian fluids

    Reduction, Symmetry and Phases in Mechanics

    Get PDF
    Various holonomy phenomena are shown to be instances of the reconstruction procedure for mechanical systems with symmetry. We systematically exploit this point of view for fixed systems (for example with controls on the internal, or reduced, variables) and for slowly moving systems in an adiabatic context. For the latter, we obtain the phases as the holonomy for a connection which synthesizes the Cartan connection for moving mechanical systems with the Hannay-Berry connection for integrable systems. This synthesis allows one to treat in a natural way examples like the ball in the slowly rotating hoop and also non-integrable mechanical systems

    Asymptotic Stability, Instability and Stabilization of Relative Equilibria

    Get PDF
    In this paper we analyze asymptotic stability, instability and stabilization for the relative equilibria, i.e. equilibria modulo a group action, of natural mechanical systems. The practical applications of these results are to rotating mechanical systems where the group is the rotation group. We use a modification of the Energy-Casimir and Energy-Momentum methods for Hamiltonian systems to analyze systems with dissipation. Our work couples the modern theory of block diagonalization to the classical work of Chetaev

    Normalizing connections and the energy-momentum method

    Get PDF
    The block diagonalization method for determining the stability of relative equilibria is discussed from the point of view of connections. We construct connections whose horizontal and vertical decompositions simultaneosly put the second variation of the augmented Hamiltonian and the symplectic structure into normal form. The cotangent bundle reduction theorem provides the setting in which the results are obtained

    Lagrangian Reduction, the Euler--Poincar\'{e} Equations, and Semidirect Products

    Get PDF
    There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. These reduced variational principles are interesting in their own right since they involve constraints on the allowed variations, analogous to what one finds in the theory of nonholonomic systems with the Lagrange d'Alembert principle. In addition, the abstract theorems about circulation, what we call the Kelvin-Noether theorem, are given.Comment: To appear in the AMS Arnold Volume II, LATeX2e 30 pages, no figure
    corecore