1,140 research outputs found

    Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

    Get PDF
    Cuticle is one of the most abundant, but least studied, biological composites. As a result, it has contributed very little to the field of biomimetics. An important step to overcome this problem is to study cuticle biomechanics by means of accurate mechanical measurements. However, due to many reasons, mechanical testing on fresh cuticle specimens is not always possible. Hence, researchers often use stored specimens to measure properties of arthropod cuticle. Our knowledge about the influence of different treatment methods on cuticle properties is currently very limited. In this study, we investigated the effect of freezing, desiccation, and rehydration on the elastic modulus of the hind tibial cuticle of locusts obtained by nanoindentation. We found that all the mentioned treatments significantly influence cuticle properties. This is in contrast to previous reports suggesting that freezing did not significantly influence the elastic modulus of native cuticle specimens tested in bending. In the light of our data, we suggest that changes of the elastic modulus of cuticle are not solely due to changes of the water content. Our results provide a platform for more accurate measurements of cuticle properties

    Conflicting requirements for transparency and mechanical stability in the compound eyes of desert locusts

    Get PDF
    Compound eyes of insects should be both thin and transparent to allow light to pass through, and at the same time mechanically stable to serve as exoskeleton. These conflicting requirements make the corneal cuticle an interesting example for studying cuticle biomechanics as well as for designing composite materials that seek similar properties. Here we combined scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and nanoindentation, to investigate the microstructure, material composition and material properties of the corneal cuticle of desert locust Schistocerca gregaria. The results suggest that a fully helicoidal architecture and large proportion of resilin in the corneal cuticle are likely to be adaptations for light transmission. Even though the corneal cuticle is resilin-rich, its elastic modulus is at least three times higher than that previously reported for other resilin-rich cuticles. This is likely due to the specific microstructure of the corneal cuticle with densely packed layers. This study presents one of a series of studies, in which we used multidisciplinary approaches, to understand the link between the structure, material, property, and function in insect cuticle

    WingSegment: A Computer Vision‐Based Hybrid Approach for Insect Wing Image Segmentation and 3D Printing

    Get PDF
    This article introduces WingSegment, a MATLAB app‐designed tool employing a hybrid approach of computer vision and graph theory for precise insect wing image segmentation. WingSegment detects cells, junctions, Pterostigma, and venation patterns, measuring geometric features and generating Voronoi patterns. The tool utilizes region‐growing, thinning, and Dijkstra's algorithms for boundary detection, junction identification, and vein path extraction. It provides histograms and box plots of geometric features, facilitating comprehensive wing analysis. WingSegment's efficiency is validated through comparisons with established tools and manual measurements, demonstrating accurate results. The tool further enables exporting detected boundaries as FreeCAD macro files for 3D modeling and printing, supporting finite element analysis. Beyond advancing insect wing morphology understanding, WingSegment holds broader implications for diverse planar structures, including leaves and geocells. This tool not only enhances automated geometric analysis and 3D model generation in insect wing studies but also contributes to the broader advancement of analysis, 3D printing, and modeling technologies across various planar structures

    Evaluation of the Use and Reasons for Not Using a Helmet by Motorcyclists Admitted to the Emergency Ward of Shahid Bahonar Hospital in Kerman

    Get PDF
    Background: Motorcycle crashes are the cause of severe morbidity and mortality especially because of head injuries. It seems that wearing a helmet has an effective role in protection against head injuries. Nevertheless, motorcyclists usually have no tendency to wear a helmet when driving in cities and have several reasons for this behavior. Objectives: This study aimed to evaluate the use and reasons for not using a helmet by motorcyclists admitted to an emergency ward of a trauma hospital due to accident in Kerman, Iran. Patients and Methods: This study was carried out by recoding the opinions of motorcyclists who had been transferred to the emergency ward of Shahid Bahonar Hospital (Kerman/Iran). Since no data was available on the frequency of the use of helmets, a pilot study was carried out and a sample size of 377 was determined for the main study. Then a researcher-made questionnaire was used to investigate the motorcyclists’ reasons for not using a helmet. Results: Only 21.5% of the motorcyclists had been wearing helmets at the time of the accident. The most frequent reasons for not using a helmet were the heavy weight of the helmet (77%), feeling of heat (71.4%), pain in the neck (69.4%), feeling of suffocation (67.7%), limitation of head and neck movements (59.6%) and all together, physical discomfort was the main cause of not wearing a helmet during motorcycle rides. Conclusions: In general, it appears that it is possible to increase the use of helmets by eliminating its physical problems, and increasing the knowledge of community members in relation to the advantages of helmet use, which will result in a significant decrease in traumas resulting from motorcycle accidents

    A new approach for quantitative evaluation of reconstruction algorithms in SPECT

    Get PDF
    Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems, and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire tomographic and planar image of the same structure. The planar image may be used as the reference image to evaluate the quality of reconstructed slices, using the companion software developed in MATLAB. Materials and Methods: The designed phantom was composed of 4 independent 2D slices that could have been placed juxtapose to the 3D phantom. Each slice was composed of objects of different size and shape (for example: circle, triangle, and rectangle). Each 2D slice was imaged at distances ranging from 0 to 15 cm from the collimator surface. The phantom in 3D configuration was imaged acquiring 128 views of 128×128 matrix size. Reconstruction was performed using different filtering condition and the reconstructed images were compared to the corresponding planar images. The modulation transfer function, scatter fraction and attenuation map were calculated for each reconstructed image. Results: Since all the parameters of the acquisition were identical for the 2D and the 3D imaging, it was assumed that the difference in the quality of the images has exclusively been due to the reconstruction condition. The planar images were assumed to be the most perfect images which could be obtained with the system. The comparison of the reconstructed slices with the corresponding planar images yielded the optimum reconstruction condition. The results clearly showed that Wiener filter yields superior quality image among the entire tested filters. The extent of the improvement has been quantified in terms of universal image quality index. Conclusion: The phantom and the accompanying software were evaluated and found to be quite useful in determining the optimum filtering condition and mathematical evaluation of the scatter and attenuation in tomographic images. A new approach for quantitative evaluation of reconstruction algorithms in SPECT (PDF Download Available). Available from: https://www.researchgate.net/publication/229005593_A_new_approach_for_quantitative_evaluation_of_reconstruction_algorithms_in_SPECT [accessed Nov 07 2017]

    Complexity biomechanics: a case study of dragonfly wing design from constituting composite material to higher structural levels.

    Get PDF
    Presenting a novel framework for sustainable and regenerative design and development is a fundamental future need. Here we argue that a new framework, referred to as complexity biomechanics, which can be used for holistic analysis and understanding of natural mechanical systems, is key to fulfilling this need. We also present a roadmap for the design and development of intelligent and complex engineering materials, mechanisms, structures, systems, and processes capable of automatic adaptation and self-organization in response to ever-changing environments. We apply complexity biomechanics to elucidate how the different structural components of a complex biological system as dragonfly wings, from ultrastructure of the cuticle, the constituting bio-composite material of the wing, to higher structural levels, collaboratively contribute to the functionality of the entire wing system. This framework not only proposes a paradigm shift in understanding and drawing inspiration from natural systems but also holds potential applications in various domains, including materials science and engineering, biomechanics, biomimetics, bionics, and engineering biology. [Abstract copyright: © 2024 The Author(s).

    Locomotory Behavior of Water Striders with Amputated Legs

    Get PDF
    The stability of the body during locomotion is a fundamental requirement for walking animals. The mechanisms that coordinate leg movement patterns are even more complex at water–air interfaces. Water striders are agile creatures on the water surface, but they can be vulnerable to leg damage, which can impair their movement. One can assume the presence of certain compensatory biomechanical factors that are involved in the maintenance of postural balance lost after an amputation. Here, we studied changes in load distribution among the legs and assessed the effects of amputation on the locomotory behavior and postural defects that may increase the risk of locomotion failure. Apparently, amputees recover a stable posture by applying leg position modifications (e.g., widening the stance) and by load redistribution to the remaining legs. Water striders showed steering failure after amputation in all cases. Amputations affected locomotion by (1) altering motion features (e.g., shorter swing duration of midlegs), (2) functional constraints on legs, (3) shorter travelled distances, and (4) stronger deviations in the locomotion path. The legs functionally interact with each other, and removal of one leg has detrimental effects on the others. This research may assist the bioinspired design of aquatic robots

    Patterns of load distribution among the legs in small water striders during standing and striding

    Get PDF
    Water striders (Gerris argentatus) move across the water surface by taking advantage of the surface tension, which supports their bodyweight without breaking. During locomotion, the midlegs are primarily responsible for generating thrust, whereas the other legs support the body. Although the aspects of standing and locomotion on the water surface are well understood, relatively fewer studies concerned the coordinated biomechanical movements of the legs. In order to maintain buoyancy of the body on the water surface, the leg positions must be adjusted to distribute the bodyweight appropriately. The present study investigates distribution of the bodyweight on the legs in relatively small water striders. We aimed to understand how loading on the legs changes during sculling that leads to sliding of the body on the water surface. The assistance of all legs at every moment enables the body to maintain its floating during standing and striding. Water striders can achieve a gentle striding through the midlegs driving phase in association with smooth load shifting among their legs, which are positioned in a specific configuration to support the insect on the water surface

    The effect of high-frequency electric pulses on tumor blood flow in vivo

    Get PDF
    Abstract The aim of this study was to evaluate the effect of a 5-kHz repetition frequency of electroporating electric pulses in comparison to the standard 1-Hz frequency on blood flow of invasive ductal carcinoma tumors in Balb/C mice. Electroporation was performed by the delivery of eight electric pulses of 1,000 V cm-1 and 100 ls duration at a repetition frequency of 1 Hz or 5 kHz. Blood flow changes in tumors were measured by laser Doppler flowmetry. Monitoring was performed continuously for 10 min before application of the electric pulses as well as immediately after application of the electric pulses for 40 min. The delivery of electric pulses to tumors induced changes in tumor blood flow. The reduction in blood flow started after the stimulation and continued for the 40-min period of observation. There was a significant difference in blood flow changes 3 min after application of the electric pulses at 1-Hz or 5-kHz repetition frequency. However, after 3 min the difference became nonsignificant. The findings showed that the high pulse frequency (5 kHz) had an effect comparable to the 1-Hz frequency on tumor blood flow except at very short times after pulse delivery, when pulses at 5 kHz produced a more intense reduction of blood flo
    corecore