700 research outputs found
Density-functional embedding using a plane-wave basis
The constrained electron density method of embedding a Kohn-Sham system in a
substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454
(1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993))
is applied with a plane-wave basis and both local and non-local
pseudopotentials. This method divides the electron density of the system into
substrate and embedded electron densities, the sum of which is the electron
density of the system of interest. Coupling between the substrate and embedded
systems is achieved via approximate kinetic energy functionals. Bulk aluminium
is examined as a test case for which there is a strong interaction between the
substrate and embedded systems. A number of approximations to the
kinetic-energy functional, both semi-local and non-local, are investigated. It
is found that Kohn-Sham results can be well reproduced using a non-local
kinetic energy functional, with the total energy accurate to better than 0.1 eV
per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure
CELL-LINED, NONWOVEN MICROFIBER SCAFFOLDS AS A BLOOD INTERFACE *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73137/1/j.1749-6632.1977.tb41787.x.pd
Detailed Analysis of Transverse Emittance of the FLUTE Electron Bunch
The compact and versatile linear accelerator-based test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) is operated at KIT. Its primary goal is to serve as a platform for a variety of accelerator R\&D studies like the generation of strong ultra-short terahertz pulses. The amplitude of the generated coherent THz pulses is proportional to the square number of particles in the bunch. With the transverse emittance a measure for the transverse particle density can be determined. It is therefore a vital parameter in the optimization for operation. In a systematic study, the transverse emittance of the electron beam was measured in the FLUTE injector. A detailed analysis considers different influences such as the bunch charge and compares this with particle tracking simulations carried out with ASTRA. In this contribution, the key findings of this analysis are discussed
Dynamical Generation of Fermion Mass and Magnetic Field in Three-Dimensional QED with Chern-Simons Term
We study dynamical symmetry breaking in three-dimensional QED with a
Chern-Simons (CS) term, considering the screening effect of flavor
fermions. We find a new phase of the vacuum, in which both the fermion mass and
a magnetic field are dynamically generated, when the coefficient of the CS term
equals . The resultant vacuum becomes the finite-density
state half-filled by fermions. For , we find the fermion
remains massless and only the magnetic field is induced. For ,
spontaneous magnetization does not occur and should be regarded as an external
field.Comment: 8 pages, no figure, to be published in Phys. Rev. Let
Electro-optical bunch length monitor for flute: Layout and simulations
A new compact linear accelerator FLUTE is currently under construction at Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It aims at obtaining femtosecond electron bunches (~1fs - 300 fs) with a wide charge range (1 pC - 3 nC) and requires a precise bunch length diagnostic system. Here we present the layout of a bunch length monitor based on the electro-optic technique of spectral decoding using an Yb-doped fiber laser system (central wavelength 1030 nm) and a GaP crystal. Simulations of the electro-optic signal for different operation modes of FLUTE were performed and main challenges are discussed in this talk. This work is funded by the European Union under contract PITN-GA-2011-28919
Radiation Safety at FLUTE with Special Emphasis on Activation Issues
The accelerator FLUTE (name abbreviation derived from its German name: Ferninfrarot Linac- und TestExperiment) has been set up in cooperation with DESY and PSI [1]. The electron source and diagnostics has commenced operation. General safety issues of FLUTE are covered in this paper. The activation of the accelerator and vacuum parts were predicted previously [2]. The attention is given to the activation of aluminum and impurities in the electron absorber of the beam dump. Potential air activation in the experimental hall is also discussed
The Energy Density in the Maxwell-Chern-Simons Theory
A two-dimensional nonrelativistic fermion system coupled to both
electromagnetic gauge fields and Chern-Simons gauge fields is analysed.
Polarization tensors relevant in the quantum Hall effect and anyon
superconductivity are obtained as simple closed integrals and are evaluated
numerically for all momenta and frequencies. The correction to the energy
density is evaluated in the random phase approximation (RPA), by summing an
infinite series of ring diagrams. It is found that the correction has
significant dependence on the particle number density.
In the context of anyon superconductivity, the energy density relative to the
mean field value is minimized at a hole concentration per lattice plaquette
(0.05 \sim 0.06) (p_c a/\hbar)^2 where p_c and a are the momentum cutoff and
lattice constant, respectively. At the minimum the correction is about -5 %
\sim -25 %, depending on the ratio (2m \omega_c)/(p_c^2) where \omega_c is the
frequency cutoff.
In the Jain-Fradkin-Lopez picture of the fractional quantum Hall effect the
RPA correction to the energy density is very large. It diverges logarithmically
as the cutoff is removed, implying that corrections beyond RPA become important
at large momentum and frequency.Comment: 19 pages (plain Tex), 12 figures not included, UMN-TH-1246/9
- …