6,911 research outputs found
Modelling Hybrid Stars in Quark-Hadron Approaches
The density in the core of neutron stars can reach values of about 5 to 10
times nuclear matter saturation density. It is, therefore, a natural assumption
that hadrons may have dissolved into quarks under such conditions, forming a
hybrid star. This star will have an outer region of hadronic matter and a core
of quark matter or even a mixed state of hadrons and quarks. In order to
investigate such phases, we discuss different model approaches that can be used
in the study of compact stars as well as being applicable to a wider range of
temperatures and densities. One major model ingredient, the role of quark
interactions in the stability of massive hybrid stars is discussed. In this
context, possible conflicts with lattice QCD simulations are investigated.Comment: Contribution to the EPJA Topical Issue on "Exotic Matter in Neutron
Stars
Constraining strangeness in dense matter with GW170817
Particles with strangeness content are predicted to populate dense matter,
modifying the equation of state of matter inside neutron stars as well as their
structure and evolution. In this work, we show how the modeling of strangeness
content in dense matter affects the properties of isolated neutrons stars and
the tidal deformation in binary systems. For describing nucleonic and hyperonic
stars we use the many-body forces model (MBF) at zero temperature, including
the mesons for the description of repulsive hyperon-hyperon
interactions. Hybrid stars are modeled using the MIT Bag Model with vector
interaction (vMIT) in both Gibbs and Maxwell constructions, for different
values of bag constant and vector interaction couplings. A parametrization with
a Maxwell construction, which gives rise to third family of compact stars (twin
stars), is also investigated. We calculate the tidal contribution that adds to
the post-Newtonian point-particle corrections, the associated love number for
sequences of stars of different composition (nucleonic, hyperonic, hybrid and
twin stars), and determine signatures of the phase transition on the
gravitational waves in the accumulated phase correction during the inspirals
among different scenarios for binary systems. On the light of the recent
results from GW170817 and the implications for the radius of
stars, our results show that hybrid stars can
only exist if a phase transition takes place at low densities close to
saturation
Space processing of chalcogenide glass
A program was conducted to develop the technique of space processing for chalcogenide glass, and to define the process and equipment necessary. In the course of this program, successful long term levitation of objects in a 1-g environment was achieved. Glass beads 4 mm diameter were containerless melted and fused together
Deconfinement to Quark Matter in Neutron Stars - The Influence of Strong Magnetic Fields
We use an extended version of the hadronic SU(3) non-linear realization of
the sigma model that also includes quarks to study hybrid stars. Within this
approach, the degrees of freedom change naturally as the temperature/density
increases. Different prescriptions of charge neutrality, local and global, are
tested and the influence of strong magnetic fields and the anomalous magnetic
moment on the particle population is discussed.Comment: To appear in the proceedings of conference XII HADRON PHYSICS April,
22-27, 2012, Bento Goncalves, Wineyards Valley Region, Rio Grande do Sul,
Brazil Revised version with corrections made to the text in page
- …