3,531 research outputs found

    Sandpile model on a quenched substrate generated by kinetic self-avoiding trails

    Full text link
    Kinetic self-avoiding trails are introduced and used to generate a substrate of randomly quenched flow vectors. Sandpile model is studied on such a substrate with asymmetric toppling matrices where the precise balance between the net outflow of grains from a toppling site and the total inflow of grains to the same site when all its neighbors topple once is maintained at all sites. Within numerical accuracy this model behaves in the same way as the multiscaling BTW model.Comment: Four pages, five figure

    Precise toppling balance, quenched disorder, and universality for sandpiles

    Full text link
    A single sandpile model with quenched random toppling matrices captures the crucial features of different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the multiscaling BTW universality class. In the asymmetric case the simple scaling of the Manna model is observed. The presence or absence of a precise toppling balance between the amount of sand released by a toppling site and the total quantity the same site receives when all its neighbors topple once determines the appropriate universality class.Comment: 5 Revtex pages, 4 figure

    Correlated Disorder Induced Extended States in One Dimensional Lattices

    Get PDF

    Extended states in 1D lattices: application to quasiperiodic copper-mean chain

    Full text link
    The question of the conditions under which 1D systems support extended electronic eigenstates is addressed in a very general context. Using real space renormalisation group arguments we discuss the precise criteria for determining the entire spertrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [ You et al. (1991)] : we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.Comment: 10 pages + 2 figures available on request; LaTeX version 2.0

    Sandpile model on an optimized scale-free network on Euclidean space

    Full text link
    Deterministic sandpile models are studied on a cost optimized Barab\'asi-Albert (BA) scale-free network whose nodes are the sites of a square lattice. For the optimized BA network, the sandpile model has the same critical behaviour as the BTW sandpile, whereas for the un-optimized BA network the critical behaviour is mean-field like.Comment: Five pages, four figure

    Energy dissipation in sheared wet granular assemblies

    Get PDF
    Energy dissipation in sheared dry and wet granulates is considered in the presence of an externally applied confining pressure. Discrete element simulations reveal that for sufficiently small confining pressures, the energy dissipation is dominated by the effects related to the presence of cohesive forces between the particles. The residual resistance against shear can be quantitatively explained by a combination of two effects arising in a wet granulate: (i) enhanced friction at particle contacts in the presence of attractive capillary forces and (ii) energy dissipation due to the rupture and reformation of liquid bridges. Coulomb friction at grain contacts gives rise to an energy dissipation which grows linearly with increasing confining pressure for both dry and wet granulates. Because of a lower Coulomb friction coefficient in the case of wet grains, as the confining pressure increases the energy dissipation for dry systems is faster than for wet ones

    Connecting protein and mRNA burst distributions for stochastic models of gene expression

    Full text link
    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression
    corecore