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Abstract : The role of correlated disorder in producing ex-
tended electronic states in quasiperiodic and aperiodic sys-
tems is discussed. The standard picture that has emerged
over the past few ycars is that dimer type correlations and
its generalisation is responsible for the extended states in
quasiperiodic copper-mecan and period-doubling chains. On
the other hand a ncw type of correlated disorder is found
to be responsible for the appearance of extended electronic
states in aperiodic systems like the Thue-Morse lattice. We

analyse both the situations and present numerical results for
the Thue-Morse chain.
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By now, there have been extensive discussions in the literature [1-3]
on one dimensional systems lacking periodicity which show evidence of
extended electronic states. The underlying cause for the appearance of
extended states in such cases has been traced to the existence of a certain
type of short range clustering cffect among the atoms, first pointed out
by Dunlap et al. [1] in their study of a distribution of random dimers on
a host lattice. It was shown that at a certain energy value the composite
transfer matrix for a dimer offers identity contribution to the full transfer
matrix, so that at this energy the entire lattice effectively behaves as an
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ordercd chain. These corrclations have later bcen. shown to persist at
all length scales in several quasipctiodic la.tt'iccs like the copper mean
chain and the period doubling lattice [2], lcading to whole hierarchics of
extended states.

The central feature in all the above cases is the existence of a certain
ciuster of atoms in the chain at every length scale, the cluster itsclf
consisting of a repetition of a certain subcluster a finite number of times.
Tho electronic propertics for the complete chain is determined by the full
transicr mateix which then has the following structure :
\

T=..PPPRPRPPR... \

where f is the composite transfer matrix having itself the form M™,
whrre A is the transfer matrix of a subcluster, m repetitions of which
genvrates a cluster with transfer matrix H. Here we assume that the
chain 1s being described by the usual tight binding Anderson hamilfonian
with site energies « and hopping matrix clements ¢ arrayed in accordance
with the underlying quasiperiodicity of the lattice. The amplitude of the
wavefunction at the nth and (n + 1)th siles are related to these at the
Oth and 1st site by the relation ¥, = 7'y, where ¥,, is a column vector
consisting of the amplitudes ¥, 41 and ¥,,.

The wppearance of cxtended states in such a lattice is dependent on
a) the possibility of the cluster matrix R becoming equal to the identity
matrix at some energy so thal at these energics these clusters may be
effectively disregarded and b) the possibility of the remainder of the lat-
tice described by the transfer matrices P forming a periodic chain. Here
we shall be concerned with an analysis of a) only, since in both copper-
mean chain as well as the period doubling lattice the other condition b)
automatically obtains [ sce ref.[2] for further details ].

It turns out that in all cases of interest the matrix M is a 2 x 2

unimodular matrix, so that we may apply a well-known theorem due to
Cayley and Hamilton

M™ = Up_y(2)M = Up_y(2)1

where z = (1/2)TrM, and Un(z) = sin(m + 1)0/sin0, with cosf =
z. Here Un(z) is the mth order Chebyshev polynomial of the second
kind. For valucs of cnergy corresponding to the roots of the cquation
Un-1(z) = 0, we eflectively have M™ proportional to I, so that the
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composite transfer matrix R effectively contributes only a phase factor
to the full transmission. Thus if the remaining lattice forms a periodic
Jattice consisting of the matrices P, and the energies obtained as solutions
of Un-1(z) = 0 happen to be within the allowed band of this lattice,then
the energics automatically correspond to extended states.

While many of the quasiperiodic lattices support extended states with
the above type of correlated disorder as the underlying cause, there are
other instances of aperiodic chains where the correlated disorder manis-
fests itself in an entirely different way. An cxample of this is the Thue-
Morse chain. In this chain there is numerical evidence of extended states
[4) although there is no short range dimer-type positional correlations.
As we shall see, another kind of clustering effect shows up in this lattice,
which cannot be analysed by the standard method outlined above and
developed in detail in ref.[1,2].

A Thue-Morse (TM) chain may be built up by starting with two
letters A and B and using the inflation rulc A - AB and B — BA
repeatedly, where the letters A and B may be thought of as representing
the atoms A and B. The ratio of the numbers of A and B atoms in
any gencration £ is N4(£)/Ng(€) = 1. We again use the tight-binding
one-band hamiltonian to describe this sytem, and for convenience we set
the hopping integral equal to unity.

As before, the amplitude of the wave function at the n-th site is
related to that at the first site by the following matrix product

where M, is the transfer matrix for a single atom.

In order to unravel the correlations that are responsible for the ex-
tended states in a Thue-Morse chain, we first recapitulate the struc-
tural peculiarities of this lattice. At the very basic level, we may re-
gard the atoms A and B to be the basic bailding blocks of the TM
lattice; at the next level the pairs AB and BA may be regarded as
the basic starting elements on which the repeated application of the
Thue-Morse inflation rules generates the whole lattice. We may suc-
cessively consider the pair of quadruplets ABBA and BAAB, the pair
ABBABAAB and BAABABBA, the pair ABBABAABBAABABBA
and BAABABBAABBABAARB etc. as the starting blocks for gener-
ating the Thue-Morse chain by applying the appropriate inflation rules.
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Evidently, there are no dimer or higher order atomic clustering in this
lattice. It thus becomes necessary to analyse the products of transfer
matrices corresponding to thesc strings of atoms in order to understand
the conditions under which extended states are supported by the TM
lattice.

To handle such long products of matrices we resort to the following
device. Let us begin by resolving the 2 x 2 matrices M, in a basis formed
by the 2 x 2 identity matrix I and the three Pauli matrices o3, o, and
o,. We then have the expressions for M4 and My in the followii\1g form:

\
My = asl + oz + 740y + b40; \

Mgy = apl+ fgo, + 70, + bpo,

where axB) = 848) = (E — eas))/2, Bap) = 0 and y4(5) = —i.

Using this equation rcpeatedly, we can casily find the forms of the
longer matrix products mentioned above. Interestingly, the pair of prod-
ucts of matrices MAMgMgM MgM M Mg ...and MgM s M,MgM,
MpgMpM, ...each with 2" clements show a surprising regularity having
either of the following forms

M MgMgM,MgM M My = o,]+ v,0,+ 6,0,
(n even)
MgM M MgM;MgMgM 4 = a,,I+'y:‘a, +5:.0’,
and
MAMBMBMAMBMAMAMB e = anI + ﬂnaz + TnOy + 6,10';
(n odd).

MBMAMAMBMAMBMBMA oo = opl - ﬂnaz + Tnoy + 0no,

It follows that the matrix products MAMgMgM MgM M Mg
and MpMAMsMgMsMpMpM,--- can never be made equal at somc
value of the energy for even values of n because their expansions differ
in two coefficients ¥ and 6. On the other hand, for odd values of n,
the above equations show that the matrix products become equal to
each other if B, = 0. Thus the energy values for which 8, = 0 (»
odd) are the ones for which the composite transfer matrices for of the
strings of atoms ABBABAAB .- and BAABABBA - - - offer identical
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Fig.1 Plot of |,|* versus site number n for a TM sequence with 256 sites.
Ilere €4 = —€p = 0.5 with energics measured in units of hopping matrix
element ¢. Figs.(a), (b), (c) and (d) correspond respectively to encrgies
1.5,0.337965671230,—1.260097834748 and —1.995507972823.

contributions to the full transfer matrix for the whole chain. Since the
Thue-Morse chain may be regarded as built out of these composite blocks,
the full transfer matrix for the whole chain now consists of a product of
identical unimodular 2 x 2 matrices M, cach corresponding to a block of
atoms ABBABAAB :-- or BAABABBA - --.

The recursion relations connecting the a, B, v and é between succes-
sive generations may be found after some algebra, and it is straighforward
to obtain the algebraic expressions for the energy values obtained from
the condition §, = 0. For the sake of illustration we display in Fig.1 the
variation of ||* with the site-index n for a few selected energies. The
signature of the underlying Thue-Morse aperiodicity is particularly ap-
parent in Figs.1(a), 1(c) and 1(d); all the wave-functions are lattice-like.
The general characteristic of these functions is that with increasing n,
amplitudes tend to cluster around groups of sites scparated by islands
where the amplitudes have very low values, a fact which was also pointed
out by Ryu et al. [5].
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The spirit in which the present analysis has been carried out corre-

sponds to the real space renormalisation group point of view. Here the
renormalisation process becomes evident when we resolve the composite
matrices in the basis of the Pauli matrices, a resolution which clearly
reveals the repeating character of the strings of matrices in alternate

gencrations.
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