7,844 research outputs found

    Soluble field theory with a massless gauge invariant limit

    Get PDF
    It is shown that there exists a soluble four parameter model in (1+1) dimensions all of whose propagators can be determined in terms of the corresponding known propagators of the vector coupling theory. Unlike the latter case, however, the limit of zero bare mass is nonsingular and yields a nontrivial theory with a rigorously unbroken gauge invariance.Comment: 7 pages, revtex, no figure

    Unification of the Soluble Two-dimensional vector coupling models

    Full text link
    The general theory of a massless fermion coupled to a massive vector meson in two dimensions is formulated and solved to obtain the complete set of Green's functions. Both vector and axial vector couplings are included. In addition to the boson mass and the two coupling constants, a coefficient which denotes a particular current definition is required for a unique specification of the model. The resulting four parameter theory and its solution are shown to reduce in appropriate limits to all the known soluble models, including in particular the Schwinger model and its axial vector variant.Comment: 10 page

    Effective Interaction Techniques for the Gamow Shell Model

    Get PDF
    We apply a contour deformation technique in momentum space to the newly developed Gamow shell model, and study the drip-line nuclei 5He, 6He and 7He. A major problem in Gamow shell-model studies of nuclear many-body systems is the increasing dimensionality of many-body configurations due to the large number of resonant and complex continuum states necessary to reproduce bound and resonant state energies. We address this problem using two different effective operator approaches generalized to the complex momentum plane. These are the Lee-Suzuki similarity transformation method for complex interactions and the multi-reference perturbation theory method. The combination of these two approaches results in a large truncation of the relevant configurations compared with direct diagonalization. This offers interesting perspectives for studies of weakly bound systems.Comment: 18 pages, 17 figs, Revtex

    Supersymmetry and the Chiral Schwinger Model

    Full text link
    We have constructed the N=1/2 supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N=1/2 supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N=1/2 multiplets.Comment: one 9 pages Latex file, one ps file with one figur

    Operator Ordering Problem of the Nonrelativistic Chern-Simons Theory

    Full text link
    The operator ordering problem due to the quantization or regularization ambiguity in the Chern-Simons theory exists. However, we show that this can be avoided if we require Galilei covariance of the nonrelativistic Abelian Chern-Simons theory even at the quantum level for the extended sources. The covariance can be recovered only by choosing some particular operator orderings for the generators of the Galilei group depending on the quantization ambiguities of the gauge−mattergauge-matter commutation relation. We show that the desired ordering for the unusual prescription is not the same as the well-known normal ordering but still satisfies all the necessary conditions. Furthermore, we show that the equations of motion can be expressed in a similar form regardless of the regularization ambiguity. This suggests that the different regularization prescriptions do not change the physics. On the other hand, for the case of point sources the regularization prescription is uniquely determined, and only the orderings, which are equivalent to the usual one, are allowed.Comment: 18 page

    On the Minimal Model of Anyons

    Get PDF
    We present new geometric formulations for the fractional spin particle models on the minimal phase spaces. New consistent couplings of the anyon to background fields are constructed. The relationship between our approach and previously developed anyon models is discussed.Comment: 17 pages, LaTex, no figure

    The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation

    Full text link
    We present the results of polarimetric (RR band) and multicolor photometric (BVRIJHKBVRIJHK) observations of the blazar AO 0235+16 during an outburst in 2006 December. The data reveal a short timescale of variability (several hours), which increases from optical to near-IR wavelengths; even shorter variations are detected in polarization. The flux density correlates with the degree of polarization, and at maximum degree of polarization the electric vector tends to align with the parsec-scale jet direction. We find that a variable component with a steady power-law spectral energy distribution and very high optical polarization (30-50%) is responsible for the variability. We interpret these properties of the blazar withina model of a transverse shock propagating down the jet. In this case a small change in the viewing angle of the jet, by â‰Č1o\lesssim 1^o, and a decrease in the shocked plasma compression by a factor of ∌\sim1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap

    Pion-less effective field theory for atomic nuclei and lattice nuclei

    Get PDF
    We compute the medium-mass nuclei 16^{16}O and 40^{40}Ca using pionless effective field theory (EFT) at next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to experimantal data for nuclei with mass numbers A=2A=2 and 33, or alternatively to results from lattice quantum chromodynamics (QCD) at an unphysical pion mass of 806 MeV. The EFT is implemented through a discrete variable representation in the harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space and facilitates the computation of medium-mass nuclei. At NLO the nuclei 16^{16}O and 40^{40}Ca are bound with respect to decay into alpha particles. Binding energies per nucleon are 9-10 MeV and 30-40 MeV at pion masses of 140 MeV and 806 MeV, respectively.Comment: 26 page
    • 

    corecore