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We compute the medium-mass nuclei 16O and 40Ca using pion-less effective field theory (EFT) at next-to-
leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to experimental data for
nuclei with mass numbers A = 2 and 3, or alternatively to results from lattice quantum chromodynamics at an
unphysical pion mass of 806 MeV. The EFT is implemented through a discrete variable representation in the
harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space
and facilitates the computation of medium-mass nuclei. At NLO the nuclei 16O and 40Ca are bound with respect
to decay into alpha particles. Binding energies per nucleon are 9–10 MeV and 21–40 MeV at pion masses of 140
and 806 MeV, respectively.

DOI: 10.1103/PhysRevC.98.054301

I. INTRODUCTION

Pion-less effective field theory (EFT) is widely employed
to describe the structure and reactions of the lightest nuclei [1–
4]. Variants of this EFT have also been applied to describe
halo nuclei [5–8] and dilute Fermi gases [9]. Lattice nuclei,
i.e., nuclei computed from lattice quantum chromodynamics
(QCD) [10], can also be described in pion-less EFT [11,12].
In that approach, the relevant low-energy coefficients (LECs)
of the EFT are adjusted to data of light nuclei computed
with lattice QCD, and predictions are made for heavier nu-
clei. Although present-day lattice QCD calculations of nuclei
use unphysically large pion masses, one might expect that
advances in that field will eventually allow us to tie nuclear
structure to QCD.

16O is the heaviest nucleus computed in pion-less EFT so
far, and it was found to be unstable against break up into
four 4He nuclei at leading order (LO) [12]. We are aware of
only a few applications of pion-less EFT to nuclear structure
calculations beyond mass number A � 4: Platter et al. [13]
found that no four-nucleon force is needed to describe 4He at
LO. This result was confirmed at next-to-leading order (NLO)
by Kirscher et al. [14]; studies of heavier helium isotopes are
presented in Refs. [15,16]. Very recently, Lensky et al. [17]
studied 3,4He at next-to-next-to-leading order. Stetcu et al.
[18] computed 6Li at LO and found it to be less bound than
4He.

In contrast to pion-less EFT, chiral EFT [19–21] has been
used to compute heavy nuclei up to the mass number A = 100
region [22–28]. We can only speculate about this discrepancy
between chiral and pion-less EFTs. On one hand, it might
be a concern that pion-less EFT—with a breakdown scale
around the pion mass mπ ≈ 140 MeV–cannot be used to
describe heavy nuclei with Fermi momentum kF ≈ 270 MeV.

On the other hand, the pion is still very massive compared
to the Fermi energy of about 40 MeV. We also note that
there could be a mismatch in infrastructure. Many of the
powerful nuclear quantum many-body solvers [24,26,29–31]
start from interactions in the harmonic oscillator basis, and
matrix elements for interactions from chiral EFT [32–36] are
readily available in this basis. No similar and well established
infrastructure seems to exist for pion-less EFT.

This paper has two goals. First, we want to study heavier
nuclei such as 16O and 40Ca with pion-less EFT. We will
adjust the LECs of the EFT to both experimental data of light
nuclei and to data from lattice QCD. Second, we want to
formulate pion-less EFT directly in the harmonic oscillator
basis. This project was started by Stetcu et al. [18] (with sev-
eral applications to harmonically trapped systems [37–39]),
and a formulation involving energy-dependent potentials is
pursued by Haxton and co-workers [40–42]. Recently, Binder
et al. [43] and Yang [44] used the J -matrix approach [45,46]
to directly construct EFT potentials in the oscillator basis.
Here, we follow and extend the work of Ref. [43] and for-
mulate pion-less EFT as a discrete variable representation
(DVR) [47–50]. A hallmark of the present work is that the
finite oscillator space itself becomes the regulator, and no
external regulator functions are employed. Similar to nuclear
lattice EFT [51], this implementation tailors the EFT to the
employed basis and thereby facilitates the computations of
Hamiltonian matrix elements and nuclei.

Unfortunately, the computation of light nuclei in lattice
QCD is not without controversy, and there is no consensus
whether nuclear binding increases or decreases with increas-
ing pion mass. The calculations in Refs. [10,52–54] infer
bound-state energies from plateaus in the time propagation
and find that nuclear binding increases with increasing pion
mass. In contrast, the calculations in Refs. [55–57] construct
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a potential from a Bethe-Salpeter wave function and find that
lattice nuclei (computed at unphysically large pion masses)
are less bound than real nuclei [58]. Both approaches have
been used as input for the computation of increasingly heavier
nuclei [12,59]. In this work, we follow Refs. [11,12] and use
the lattice QCD results of Ref. [10] as input to constrain the
LECs of our EFT. Similar lattice QCD results, which support
an increase in binding energy with increasing pion mass, were
also found by the other collaborations in Refs. [60,61].

This paper is organized as follows. In Sec. II we tailor pion-
less EFT interactions to the harmonic oscillator basis using
a DVR. In Sec. III we discuss the fitting procedure used to
constrain LECs to data and lattice data, and present results for
A = 3, 4 nuclei for a range of ultraviolet (UV) cutoffs. We use
the NLO interactions to compute atomic and lattice 16O and
40Ca nuclei in Sec. IV. A summary of this paper is given in
Sec. V. The formulation of the EFT in the harmonic oscillator
basis involves several technical elements and many checks.
For the purpose of readability this information is presented in
a number of Appendixes.

II. PION-LESS EFFECTIVE FIELD THEORY
IN THE OSCILLATOR BASIS

A. Pion-less EFT

We briefly introduce pion-less EFT and refer the reader to
the reviews [1,62,63] for details on this extensive subject. In
pion-less EFT, neutrons and protons are the relevant degrees
of freedom, and the breakdown scale is given by the pion
mass. Using naive dimensional analysis, nucleon-nucleon
(NN) interactions in momentum space are

V
(0)
NN ( �p′, �p) =CS + CT �σ1 · �σ2,

V
(2)
NN ( �p′, �p) = C1q

2 + C2k
2 + (C3q

2 + C4k
2) �σ1 · �σ2

− iC5
�σ1 + �σ2

2
· (�q × �k)

+ C6( �σ1 · �q )( �σ2 · �q )

+ C7( �σ1 · �k)( �σ2 · �k). (1)

Here �p′ and �p are the outgoing and incoming relative mo-
menta, respectively, and we use the shorthand �q = �p − �p′,
�k = ( �p′ + �p)/2 for the momentum transfer and the average
momentum, respectively. The LECs are denoted as Ci , and
the superscripts (0) and (2) on the potential denote the powers
of the momenta.

The large scattering lengths in the singlet and triplet S
waves, due to a weakly bound deuteron and almost bound
dineutron, reflect the existence of another small momentum
scale denoted by ℵ ≈ 40 MeV, and lead to a modified power
counting. In the singlet and triplet S partial waves the LO
LECs are proportional to the respective scattering lengths,
i.e., they scale as 1/ℵ instead of 1/mπ , which was expected
otherwise as the pion mass sets the breakdown scale. The un-
natural size of both S-wave LECs (with respect to the expected
scaling 1/mπ ) causes enhancement of their next higher-order
correction relative to other terms in Eq. (1). Moreover, the
S-wave LO potential is counted as O(Q−1), the enhanced

higher-order S-wave correction then becomes of O(Q0), and
other NLO terms from naive counting enter only at O(Q1)
or higher; see Refs. [1,64,65] for details. Therefore, NLO
pion-less EFT involves only S waves with the LO potentials,

V LO
NN (1S0) = C̃1S0

= CS − 3CT ,

V LO
NN (3S1) = C̃3S1

= CS + CT ,

and the NLO potentials,

V NLO
NN (1S0) = C1S0

(p2 + p′2),

V NLO
NN (3S1) = C3S1

(p2 + p′2). (2)

Pion-less EFT can be used to reproduce the deuteron binding
energy and the effective range expansion for low-energy NN
scattering

k cot δ0(k) = − 1

a0
+ 1

2
r0k

2 + · · · . (3)

This defines the S-wave scattering length a0 and effective
range r0. Pion-less EFT yields the scattering length at LO, and
the effective range at NLO.

To renormalize the three-nucleon system, the three-
nucleon force (NNN) is promoted to LO [66]. There are many
equivalent ways to write this contact [19,67], and we use

VNNN = cE

F 4
π�χ

∑
j �=i

�τi · �τj .

Here �χ = 700 MeV and Fπ = 92.4 MeV are constants (em-
ployed in chiral EFT) that make cE dimensionless; we include
these for convenience only. Summarizing, the complete LO
interaction is given by

VLO = V LO
NN (1S0) + V LO

NN (3S1) + VNNN . (4)

Our NLO potential consists of the terms (2) added to
the LO potential Eq. (4). We note that no higher-rank nu-
clear many-body force enters at NLO in pion-less EFT
[16,66,68,69]. We include the Coulomb interaction nonper-
turbatively at the level of single photon exchange, i.e., αem/r .
Here, αem is the fine structure constant. We note that further
electromagnetic corrections [70,71] enter up to NLO. We omit
any such corrections in this work.

We will solve the NLO potential with a nonperturbative
method, as done previously, for instance, in Refs. [14,17]. The
reason is as follows. Nuclei heavier than 4He computed with
LO pion-less EFT potentials have been found to be unstable
with respect to α-particle emission. Examples in this case are
the nuclei 6Li [18] and 16O [12], and we found similar results
for 16O and 40Ca. Thus the ground states of LO pion-less
EFT potentials are clusters (probably gases of α particles,
deuterons, and nucleons), but not self-bound nuclei. While the
perturbative treatment of NLO terms could lead to energies
that would mimic self-bound systems it cannot change the
extended continuum wave function of a gaseous state into
a bound-state wave function (which decays exponentially in
position space and is localized). Thus we see it as mandatory
to include the NLO terms of the potentials nonperturbatively.
The application of a nonperturbative method might be valid
only for UV cutoffs that are not too large, and we will limit
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the range of cutoffs to up to about 700 MeV. Larger cutoffs
are discussed in Appendix E in connection with the Wigner
bound. For a perturbative treatment of the three-nucleon sys-
tems, we refer the reader to Ref. [4].

In this work, we compute nuclei such as 16O and 40Ca.
This requires us to be judicious about the basis we want to
employ. Very recently, Binder et al. [43] showed that EFTs
can be formulated in the harmonic oscillator basis, and they
performed converged calculations for heavy nuclei based on
NN interactions alone. In what follows, we briefly review the
essential ingredients of this approach.

B. Discrete variable representations

A finite harmonic oscillator basis imposes infrared (IR) and
UV cutoffs [18,72–75]. These correspond to hard-wall bound-
ary conditions in position and momentum space, respectively.
They depend on the maximum number of oscillator quanta N
included in the basis and on the oscillator length

b ≡
√

h̄/(μω). (5)

Here, μ is the reduced mass for the two-nucleon system, and
h̄ω is the oscillator spacing. In position space, the effective
hard wall is located at the radius [76]

L =
√

2(N + 3/2 + 2)b, (6)

while in momentum space the radius � defining the UV cutoff
is given by [77]

� =
√

2(N + 3/2 + 2)h̄/b. (7)

For many-body systems, similar expressions were derived
in Refs. [78,79]. The effective hard wall in position space
modifies the asymptotic tail of bound-state wave functions and
introduces—akin to the Lüscher [80] formula—a correction to
bound-state energies and other observables [75,81,82].

We will formulate pion-less EFT in a spherical harmonic
oscillator basis. The radial basis functions at orbital angular
momentum l are

ψn,l (r ) = (−1)n
√

2n!

�(n + l + 3/2)b3

(
r

b

)l

× e−(1/2)(r2/b2 )Ll+(1/2)
n

(
r2

b2

)
(8)

in position space, and

ψ̃n,l (k) =
√

2n!b3

�(n + l + 3/2)
(kb)le−(1/2)k2b2

Ll+(1/2)
n (k2b2)

(9)
in momentum space. Here, L

l+1/2
n denotes the generalized

Laguerre polynomial. The finite basis consists of all states
with 2n + l � N . At fixed l, we employ the shorthand

Nl ≡ (N − l)/2 (10)

for the maximum radial quantum number.
For EFT applications in a finite harmonic oscillator basis

it is useful to replace the oscillator basis functions by the
eigenfunctions φμ,l (k) of the squared momentum operator.

FIG. 1. The S wave eigenfunctions φμ,0(k) of the squared mo-
mentum operator [plotted as kφμ,0(k)] for μ = 0, 1, . . . N0) corre-
sponding to discrete momentum eigenvalues, shown as a function
of momentum for a finite harmonic oscillator basis with N = 8,
h̄ω = 22 MeV. The solid black dots on the x axis indicate the discrete
momentum eigenvalues.

Figure 1 shows the S-wave the eigenfunctions φμ,0(k) op-
erator with μ = 0, 1 . . . , N0 for the oscillator model space
N = 8, h̄ω = 22 MeV. The discrete momentum eigenvalues
kμ,l , shown as dots in Fig. 1, fulfill

L
l+1/2
Nl+1

(
k2
μ,lb

2) = 0. (11)

We see that the corresponding eigenfunctions are localized
around their eigenvalues and zero at other eigenvalues, thus
forming a DVR, i.e., a discrete mesh that provides us with
a basis in Hilbert space. For a detailed description of DVRs
we refer the reader to some of the original works in quan-
tum chemistry [47–49] and nuclear physics [50], and to the
reviews [83,84]. In the present paper, we follow the notation
of Ref. [43] and briefly summarize a few relevant results.

The eigenfunctions φμ,l (k) can be expressed as

φ̃μ,l (k) = 〈k, l|φμ,l〉 = kμ,l/b

k2
μ,l − k2

ψ̃Nl+1,l (k). (12)

This expression, when taken together with ψ̃Nl+1,l (kμ,l ) = 0
[implied by Eq. (11)] illustrates the key DVR property,

φ̃ν,l (kμ,l ) = δμ
ν c−1

ν,l . (13)

Here,

cμ,l ≡ kμ,lb√
(Nl + 1)(Nl + l + 3/2)ψ̃Nl,l (kμ,l )

(14)

is a normalization constant.
There are many ways to express the DVR wave functions.

The expression

φ̃μ,l (k) = cμ,l

Nl∑
n=0

ψ̃n,l (kμ,l )ψ̃n,l (k) (15)

is useful, because it exhibits the expansion in terms of the
harmonic oscillator basis functions. In general, DVRs fa-
cilitate the computation of matrix elements (as quadratures
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are replaced by sums over grid points). When formulated in
momentum space, they are a most natural implementation
of an EFT outside the plane-wave basis. In Appendix B we
consider other DVRs in the oscillator basis that are based on a
different set of discrete momentum points.

Due to localized nature of a DVR, the scalar product of
functions f (k) and g(k) with angular momentum l can be
defined as sum over the discrete eigenstates, i.e.,

〈f |g〉DVR ≡
Nl∑

μ=0

c2
μ,lf

∗(kμ,l )g(kμ,l ). (16)

In our case, this overlap results from employing (Nl + 1)-
point Gauss-Laguerre quadrature in the computation of the
exact scalar product,

〈f |g〉 ≡
∫ ∞

0
dkk2f ∗(k)g(k). (17)

Thus, 〈f |g〉DVR = 〈f |g〉 for functions f and g that are
spanned by the finite harmonic oscillator space. In other
cases, the scalar product in Eq. (16) is an approximation of
Eq. (17) [43]. We note that this approximation is consistent
with EFT ideas as it neglects high-momentum contributions.
In this paper, we will frequently evaluate matrix elements
of operators in the DVR. In such cases, the subscript DVR
will appear on the operator. As we will see, the DVR yields
simple expressions for matrix elements of interactions and
currents from EFT because the latter are usually expressed in
momentum space.

The DVR basis states |φμ,l〉 are related to the wave func-
tions (8) and (9) via the definitions

φμ,l (r ) ≡ 〈r, l|φμ,l〉, φ̃μ,l (k) ≡ 〈k, l|φμ,l〉. (18)

Given the momentum-space matrix element V (k′, l′; k, l) ≡
〈k′, l′|V̂ |k, l〉 in the partial-wave basis, we have in the DVR,

〈φν,l′ |V̂DVR|φμ,l〉 = cν,l′cμ,lV (kν,l′, l
′; kμ,l, l). (19)

Thus, the computation of matrix elements is very conve-
nient in the DVR basis (as it is merely a function call) once
the EFT interaction is available in the partial wave basis. We
also note that the momentum space matrix elements of the
DVR interaction 〈k′, l′|VDVR|k, l〉 agree with the original in-
teraction V (k′, l′; k, l) at the DVR momentum points (k′, k) =
(kμ,l′ , kν,l ) with ν = 0, . . . Nl′ and μ = 0, . . . Nl . One can
therefore ask to what extent does the resulting interaction, i.e.,
the left-hand side of Eq. (19), preserve the low-momentum or
IR properties of V (k′, l′; k, l)? To explore this question we
express the momentum space matrix elements of the DVR
interaction as

〈k′, l′|VDVR|k, l〉

=
Nl∑

μ=0

Nl′∑
ν=0

〈φν,l′ |V̂DVR|φμ,l〉φ̃ν,l′ (k
′)φ̃μ,l (k)

=
Nl∑

μ=0

Nl′∑
ν=0

cμ,lcν,l′ φ̃ν,l′ (k
′)φ̃μ,l (k)V (k′

ν, l
′; kμ, l). (20)

FIG. 2. The dashed red (solid blue) curve shows the contact
interaction in the DVR basis (with IR improvement) to be compared
with the original momentum-space interaction v(k) = 1 shown as
a dash-dotted black line. The thin green dashed curve shows the
contact (i.e., a δ function) in a finite harmonic oscillator basis with
N = 8, h̄ω = 22 MeV, l = 0 for reference. The solid blue dots rep-
resent the DVR momenta. The dotted black line marks the location
of the UV cutoff introduced by the finite oscillator basis.

This shows that the low-momentum expression of the left-
hand side is a superposition of matrix elements. Though the
IR cutoff of the basis is k0,l at angular momentum l, the inter-
action does not vanish for k, k′ < k0,l . In what follows, we will
therefore improve its IR behavior. Although the contribution
from the interactions at low momentum are reduced by the
integration measure dkk2 when it acts on wave functions, the
incorrect IR behavior raises questions regarding the effective-
range expansion of the DVR potential.

C. IR improvement of the NN interaction

Let us consider the case of a NN contact,

V (k′, l′ = 0; k, l = 0) = CLO, (21)

where CLO is the coupling strength. The corresponding DVR
interaction is

〈k′, 0|V IR
DVR|k, 0〉 = CLOvDVR(k′)vDVR(k) (22)

with

vDVR(k) ≡
N0∑

μ=0

cμ,0φ̃μ,0(k). (23)

Clearly, the DVR interaction differs from the original poten-
tial (21), which we now rewrite as CLOv(k)v(k′) with v(k) =
1. Figure 2 shows v(k) = 1 as the horizontal dash-dotted line,
and the DVR result vDVR as the dashed red line. The discrete
DVR momenta are shown as solid dots. We see that vDVR

coincides with the original v(k) only at these momenta, as
expected for a DVR. The δ function, evaluated exactly in
the oscillator basis, is shown as vδ . It exhibits the strongest
oscillations (and particularly large deviations at small mo-
menta) from v(k) = 1. The vertical dotted line indicates the
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FIG. 3. The IR improved DVR contact interaction V IR
DVR plotted

in momentum space. The axes represent momentum in units of fm−1.

UV cutoff in Eq. (7); as expected vDVR rapidly vanishes
here. Regarding the IR properties of the DVR interaction,
we find that v(k) and vDVR(k) are indeed very different at
lowest momenta. This is not unexpected: The finite oscillator
basis introduces an IR cutoff (set by the smallest discrete
momentum), and thus one has no control for small momenta.
We will correct this in what follows.

To improve the IR behavior, we return to Eq. (23). This
function is a superposition of functions φ̃μ,0(k) localized
around k ≈ kμ,0, and with weights cμ,0. The key idea is to
force this function to have the value 1 at k = 0 by alter-
ing the weight cN0,0 of the highest-momentum DVR func-
tion φ̃N0,0(k). This is in the EFT spirit, because we im-
prove the accuracy at low momentum at the cost of possible
loss of accuracy at high momentum. Thus, we define new
coefficients

c̄μ,0 ≡ cμ,0, for μ = 0, . . . , N0 − 1,

c̄N0,0 ≡
(

1 −
N0−1∑
ν=0

φ̃ν,l (0)cν,0

)/
φ̃N0,0(0) (24)

and consider the IR improved DVR potential

vIR
DVR(k) = CLO

N0∑
μ=0

c̄μ,0φ̃μ,0(k). (25)

By construction, it fulfills vIR
DVR(k) = 1 for discrete momenta

k ∈ {0, k0,0, . . . , kN0−1,0}. The IR improved contact is shown
as the solid blue line in Fig. 2. The IR improvement at k = 0
is obvious, and the oscillations are reduced substantially. In
Appendix C we show that the curvature of vIR

DVR(k) at k = 0
decreases as N−1 as the basis size is increased. Thus, effective
range corrections are suppressed, as expected from a proper
EFT. Summarizing, the IR improved DVR contact interaction
in momentum space is

〈k′, 0|V IR
DVR|k, 0〉 = CLOvIR

DVR(k′)vIR
DVR(k). (26)

Figure 3 shows this interaction as a matrix in momentum
space. The interaction is very smooth and almost constant,

FIG. 4. The solid blue (dashed red) curve shows the NLO in-
teraction term tailored to finite harmonic oscillator basis through
DVR with (without) IR improvement. The solid blue dots represent
discrete momentum eigenvalues in the model space N = 8, h̄ω =
22 MeV, and l = 0. The dotted black line depicts sharp cutoff �

introduced by finite harmonic oscillator basis and the dash-dotted
black line plots the interaction in continuous momentum basis.

and rapidly approaches zero at the UV cutoff of the fi-
nite harmonic oscillator basis with N = 8, h̄ω = 22 MeV.
Thus, IR improvement allows us to generate interactions with
an accurate IR behavior even for momenta that are much
smaller than the IR cutoff of the finite harmonic oscillator
basis.

We now turn to the IR improvement of the NLO interac-
tion,

V (k′, l′ = 0; k, l = 0) = CNLO[w(k) + w(k′)], (27)

with

w(k) ≡ k2. (28)

Here, CNLO is the coupling strength. The interaction is no
longer separable, and the DVR interaction has momentum-
space matrix elements

〈k′, 0|V̂DVR|k, 0〉 = CNLO[wDVR(k) + wDVR(k′)] (29)

with

wDVR(k) =
N0∑

μ=0

cμ,0k
2
μ,0φ̃μ,0(k). (30)

Figure 4 shows the functions w(k) and wDVR(k) as the dash-
dotted black and dashed red line, respectively. They coincide
at the DVR points (shown as dots).

It is clear that wDVR has the wrong value and the wrong
curvature at k = 0. This can be corrected by effectively chang-
ing the values of the coefficients cN0−1,0 and cN0,0, i.e., the
DVR-improved function becomes

wIR
DVR(k) =

N0∑
μ=0

c̄μ,0k
2
μ,0φ̃μ,l (k) (31)
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FIG. 5. Momentum space matrix elements V (k, k′) = (k2 + k′2)
for S waves in the model space N = 8 and h̄ω = 22 MeV as a
function of the momenta k and k′ after IR improvement.

with

c̄μ,0 = cμ,0, for μ = 0, . . . , N0 − 2,

c̄N0−1,0 =
∑N0−2

ν=0 φ̃ν,0(0)cν,0
(
k2
N0,0 − k2

ν,0

) − k2
N0,0

φ̃N0−1,0(0)
(
k2
N0−1,0 − k2

N0,0

) , (32)

c̄N0,0 =
∑N0−2

ν=0 φ̃ν,0(0)cν,0
(
k2
N0−1,0 − k2

ν,0

) − k2
N0−1,0

φ̃N0,0(0)
(
k2
N0,0 − k2

N0−1,0

) .

The function wIR
DVR from Eq. (31) is shown as a solid blue line

in Fig. 4. It agrees at N − 2 DVR points with w(k) and has the
correct IR behavior. The IR improved interaction has matrix
elements

〈φμ,0|V IR
DVR|φν,0〉 = CNLOc̄μ,0c̄ν,0

(
k2
μ,0 + k2

ν,0

)
,

and these are shown in Fig. 5. It is clear that the IR improve-
ment can be extended to more general interactions.

D. IR improvement of the NNN contact

We consider the three-body contact

V (k′, p′; k, p) = CNNN (33)

with its LEC CNNN . The momenta k, k′ denote the incoming
and outgoing relative momentum between particles 1 and
2, respectively, while p, p′ are the incoming and outgoing
momentum of particle 3 relative to the center of mass of
particles 1 and 2, respectively. We note that for a contact
interaction the corresponding orbital angular momenta are
zero; thus we ignore the orbital angular momentum label in
what follows. We also note that the matrix element (33) is
not fully antisymmetrized, but this is not relevant here. In
what follows, we discuss two different nonlocal regulators in
oscillator basis.

1. Cutoff in Jacobi momenta

One possibility is to regulate the incoming Jacobi momenta
k and p individually (and similar for the outgoing Jacobi mo-
menta). This approach is somewhat unusual as it corresponds

FIG. 6. Momentum space matrix elements vIR
DVR(k)vIR

DVR(p) in
harmonic oscillator model space with N = 8 and h̄ω = 22 MeV as
a function of the two incoming Jacobi momenta k and p.

to regulator functions f (p)f (k) that are multiplied with the
interaction. In this case, the DVR interaction becomes

〈k′, p′|V̂ sq
DVR|k, p〉

= C
sq
NNNvDVR(k′)vDVR(p′)vDVR(k)vDVR(p), (34)

and vDVR is as in Eq. (23). Thus, the IR improvement of the
NNN contact is identical to the NN contact discussed above,
and we have to replace vDVR(k) in Eq. (34) by Eq. (25).
Figure 6 plots the function vIR

DVR(k)vIR
DVR(p) for S waves in

both Jacobi momenta in harmonic oscillator model space with
N = 8 and h̄ω = 22 MeV. Note that we have renamed the
LEC as C

sq
NNN in Eq. (34) because of the square shape of the

interaction in the Jacobi basis.

2. Hyperspherical cutoff

Usually, the cutoff of the NNN force is in the hypermo-
mentum; see Refs. [67,85] for examples. We introduce the
hyper-radial momentum ρ and the hyperangle α as

k = ρ cos α, p = ρ sin α. (35)

The NNN contact is isotropic in hyperspherical coordinates
and only depends on the hypermomentum ρ. We recall that
the orbital angular momenta corresponding to the Jacobi
momenta vanish for the NNN contact, and so does the hyper-
spherical angular momentum. In this special case, the hyper-
radial wave function of interest is the eigenstate of a six-
dimensional harmonic oscillator with vanishing hyperangular
momentum, i.e.,

�̃n(ρ) = b̄3

√
2n!

�(n + 3)
e−ρ2 b̄2/2L2

n(ρ2b̄2), (36)

and corresponds to the energy (2n + 3)h̄ω. Here, b̄ =√
h̄/mω is the oscillator length in terms of the nucleon mass

m and differs from Eq. (5).
It is straightforward to derive the DVR for the hypermo-

mentum. It is based on the discrete momenta ρμ (with μ =
0, . . . , N ), which are the zeros of the Laguerre polynomial
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L2
N+1(ρ2b̄2). The momentum eigenfunction corresponding to

eigenvalue ρμ is

�μ(ρ) = Cμ

N∑
n=0

�̃n(ρμ)�̃n(ρ). (37)

Here, Cμ is a normalization constant. Analogous to Eq. (14),
we find

Cμ = ρμb̄√
(N + 3)(N + 1)�̃N (ρμb̄)

. (38)

The NNN contact thus becomes

〈ρ ′|UDVR|ρ〉 = uDVR(ρ ′)uDVR(ρ) (39)

with

uDVR(ρ) =
N∑

μ=0

Cμ�̃μ(ρ). (40)

As before, this DVR interaction needs IR improvement. We
generalize the solution (24) to improve the low-momentum
behavior of the DVR interaction at hyperspherical radial
momentum ρ = 0,

C̄μ ≡ Cμ, for μ = 0, . . . , N − 1,

C̄N ≡
(

1 −
N−1∑
ν=0

�̃ν (0)Cν

)/
�̃N (0), (41)

and arrive at the IR improved function

uIR
DVR(ρ) =

N∑
μ=0

C̄μ�̃μ(ρ). (42)

Thus, the IR improved potential is

〈ρ ′|U IR
DVR|ρ〉 = C tr

NNNuIR
DVR(ρ ′)uIR

DVR(ρ). (43)

Here C tr
NNN is the corresponding coupling strength.

Figure 7 compares Eq. (42) of the IR improved contact
(the solid blue line) with the contact in Eq. (40) lacking
IR improvement (the dashed red line). Note that the latter
exhibits particularly large deviations from a constant value
typical for a contact at small momenta below the IR cutoff.
This is because the integration measure dρρ5 suppresses low-
momentum deficiencies in the usual scalar product.

Our computer codes use the NNN potential in Jacobi
coordinates as input. For this reason, we need to transform
the matrix elements in Eq. (43) to the Jacobi basis. The DVR
provides us with a very simple and elegant solution to this
problem. Recall that the DVR in the Jacobi momenta provides
us with a Gauss-Laguerre integration that becomes exact for
polynomials of degree N in k and in p. Thus, the basis
functions in Eq. (36) can be exactly integrated, and

〈φν ′,0φμ′,0|Û IR
DVR|φμ,0φν,0〉 = C tr

NNN ūμ′ν ′ ūμν (44)

with ūμν = cμ,0cν,0u
IR
DVR(

√
k2
μ,0 + p2

ν,0). We note that the re-

duced mass is set to m in calculating cμ,0 and kμ,0 here.
Figure 8 plots matrix elements of the DVR interaction, given
in Eq. (44), in Jacobi momentum space.

FIG. 7. The solid blue and dashed red curves show the three-
nucleon contact in the DVR basis in hyperspherical coordinates with
and without IR improvement. The former is close to u(ρ ) = 1 at low
momentum. The solid blue dots represent the DVR momenta ρμ for
μ = 0, . . . , N when N = 8 and h̄ω = 22 MeV.

Closer inspection reveals that the overlap between the
hyper-radial wave function �N (ρ) and the radial wave func-
tions ψ̃i,0(k)ψ̃j,0(p) vanishes for i + j > N . Thus, the hy-
perspherical cutoff corresponds to a “triangular” cutoff in the
oscillator basis of the Jacobi coordinates. For this reason, the
LEC of the NNN contact in Eq. (43) carries the subscript
“tr”. In what follows we will employ the hyperspherical
formulation of NNN potential unless specified otherwise.

E. Discussion

Let us briefly summarize and discuss the main results of
this section. We introduced a momentum-space DVR in the
harmonic oscillator basis as an efficient tool to implement
an EFT. The DVR potential agrees with the momentum-
space potential only at a set of discrete momenta. The

FIG. 8. Size of momentum space matrix elements ū(k, p) =
cμ,0cν,0u

IR
DVR(

√
k2 + p2) in harmonic oscillator model space N =

8, h̄ω = 22 MeV, l1, l2 = 0. x and y axes represent Jacobi momenta
in fm−1.
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low-momentum behavior of the DVR potential can be cor-
rected such that it agrees with the momentum-space potential
at zero momentum. We have shown how to implement these
IR improvements for NN and NNN potentials.

One may wonder whether the IR improvement is really
necessary. Clearly, if one aims at an EFT that is valid at
lowest momenta, the IR improvement cannot be avoided. As
we will see below, this is particularly so when LECs of the
EFT potential are adjusted to the effective range expansion.
The works [43,44] showed that a lack of IR improvement
leads to oscillations in phase shifts, which made it difficult
to adjust the interaction to data. However, it is not clear
how much structure calculations of nuclei [24,26] have been
impacted by the use of a finite harmonic oscillator basis
without IR improvements. It could be that observables such
as ground-state energies and radii of well-bound nuclei are not
sensitive to the details of the underlying interaction at lowest
momenta. The argument is that the relevant momentum scale,
i.e., the momentum corresponding to the smallest separation
energy, often exceeds the IR cutoff of the oscillator basis; see
Refs. [86,87] and Appendix H.

Many details regarding the implementation of an EFT as a
DVR in the oscillator basis are presented in the appendixes of
this work. There we show that a DVR can be implemented in
many ways (see Appendix B), that the IR improvement is a
systematic and controlled approximation (see Appendix C),
that there are simple scaling laws for the resulting DVR
interactions (see Appendix D), that the Wigner bound is
obeyed (see Appendix E), and that regulator differences, i.e.,
different combinations of h̄ω and N with the same UV cutoff
�, are higher-order effects (see Appendix F). We also explore
the effects of truncations of NNN forces in Appendix G, and
finally show in Appendix H that IR extrapolations work well
in the DVR approach.

III. CALIBRATION AND RESULTS FOR 3H AND 3,4He

A. Atomic nuclei

In this section, we adjust the LECs in pion-less EFT to data.
For atomic nuclei, we will use the deuteron binding energy,
the effective-range expansion of the S-wave phase shifts,
and the phase shifts of the charge-dependent (CD)–Bonn
potential [88] to constrain the LECs of the NN interaction.
We note that the CD-Bonn potential reproduces phase shifts
in the singlet and triplet S channels that are of similar quality
as the Nijmegen multi-energy phase shift analysis; see, e.g.,
Figs. 6 and 7 in Ref. [88]. The NNN contact will be adjusted
to reproduce the triton binding energy. For the fits to phase
shifts the χ2 objective function contains NLO uncertainty
estimates as reciprocal weights such that low-energy “data”
are weighted highest.

To compute phase shifts in the harmonic oscillator ba-
sis, we follow Ref. [46], which is based on the J -matrix
approach [45]. For the computation of binding energies we
proceed as follows. For the interaction we will employ a
model space with N = 8. The Hamiltonian, i.e., the sum
of kinetic energy and the interaction, will be evaluated in
model spaces of size N = 8, 10, 12, . . .. For the interaction,

TABLE I. The leading order LECs C̃3s1
and C̃1s0

(both in
10−5 MeV−2), and cE (dimensionless) for atomic nuclei (with nu-
cleon mass m = 939 MeV) for different momentum cutoffs � (in
MeV) obtained from varying the oscillator frequency h̄ω (in MeV),
for interactions in a model space with N = 8.

h̄ω � C̃3s1
C̃1s0

cE

5 232.35 −1.006 988 −0.597 220 −0.163 306
10 328.59 −0.624 098 −0.431 559 −0.671 882
22 487.38 −0.379 465 −0.296 100 −0.238 514
40 657.19 −0.266 381 −0.221 703 −0.091 625

the matrix elements between states with N > 8 are zero. Thus,
UV convergence is achieved by construction. The increase of
the model space for the kinetic energy yields IR convergence;
see Ref. [43] for details. In what follows, we report virtually
converged results for nuclei with mass numbers A = 2, 3, 4.
We vary the oscillator spacing to probe the cutoff dependence
of our results.

At LO we have two LECs associated with NN contact
interactions and one for the NNN contact. In the 3S1 partial
wave, the LEC is adjusted to reproduce the deuteron binding
energy. We would like to remind the readers that bound-state
properties such as the deuteron binding energy or its radius
are governed by low energy and long wavelength physics.
Therefore, from an EFT point of view, they are as suited
as more conventional observables like scattering length and
effective range to obtain LECs. For example, an interaction
in the model space with N = 8 and h̄ω = 22 MeV, when
fit to deuteron binding energy, yields the scattering length
a = 4.71 fm, which is within LO uncertainties, i.e., about
30% of the actual value of about 5.4 fm. The coupling strength
in the singlet S channel for the NN contact is adjusted to the
neutron-proton (np) phase shifts of the CD-Bonn potential for
energies Erel ∈ [0.01, 0.1] MeV. The predicted value for the
triplet S scattering length agrees with data within 30%, which
is what we expect from simple error estimates discussed be-
low. Table I shows the values of the LECs at LO for potentials
defined in model spaces with N = 8 for different cutoffs.

We note that the LECs C̃3s1
and C̃1s0

approximately obey
the relation CLO ∝ (h̄ω)−1/2. This is a consequence of the
deuteron’s weak binding; see Appendix D for details. We also
note that the LECs of the NN interaction are consistent with
analytical results. To see this, we consider the LO potential

V (k′, k) = C0v(k′,�)v(k,�). (45)

Here, v(k′,�) is the regulator function and � is the cutoff.
For the step-function regulator v(k,�) = �(� − k) we have

C0 ≈ −2π2

m�

4π

(2π )3
, (46)

valid for � � κ, a−1 where κ is the binding momentum and
a the scattering length. Similarly, for a Gaussian regulator
v(k,�) = e−(1/2)(k2/�2 ) one has

C0 ≈ −4π
√

π

m�

4π

(2π )3
, (47)
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TABLE II. The next-to-leading order LECs C̃3s1
and C̃1s0

(both in 10−5 MeV−2), and C3s1
and C1s0

(both in 10−10 MeV−4), and cE

(dimensionless) for atomic nuclei (with nucleon mass m = 939 MeV) for different momentum cutoffs � (in MeV) obtained from varying
the oscillator frequency h̄ω (in MeV), for interactions in a model space with N = 8.

h̄ω � C̃3s1
C3s1

C̃1s0
C1s0

cE

5 232.35 −1.001 248 −0.039 732 −0.718 772 1.124 941 0.533 367
10 328.59 −0.919 696 1.078 144 −0.588 224 0.725 705 −0.274 206
22 487.38 −0.809 378 0.772 254 −0.612 966 0.727 724 −0.008 170
40 657.19 −0.866 529 0.689 544 −0.605 710 0.590 509 −0.061 330

under the same conditions.1 For � = 487 MeV and m =
939 MeV we find C0 ≈ −0.22 × 10−5 MeV−2 for the sharp
cutoff, and C0 ≈ −0.25 × 10−5 MeV−2 for the Gaussian reg-
ulator. These results are similar in size to what is reported
in Table I for the same cutoff. Thus, the results from our
EFT constructed in the harmonic oscillator basis are fully
compatible with expectations from a momentum-space EFT.

We now turn to the NLO potential. Here, we employ three
LECs from the LO contacts, and two additional LECs from
the NLO NN contact interaction in S waves. We determine the
LECs using nonperturbative solvers for the J matrix and the
Hamiltonian eigenvalues. In the triplet S channel the LECs
are inferred from the deuteron binding energy and its radius
(1.976 fm). Also, the reproduction of the scattering length and
effective range from such a potential can clearly be inferred
from the lower panel in Fig. 9. The results are similar in
quality to those by Chen et al. [89]. In the singlet S channel,
the LECs are adjusted to np phase shifts of the CD-Bonn
potential for energies Erel ∈ [0.01, 0.1] MeV. The NN interac-
tion at NLO determines the scattering lengths and the effective
range r0. Once the NN potential is fixed at NLO, the LEC for
the NNN contact is adjusted to reproduce the triton binding
energy. The results for the LECs are presented in Table II.

Figure 9 shows the phase shifts from pion-less EFT at
LO (blue dot-dashed line) and NLO (red dashed line), and
compares them to those of the CD-Bonn potential (black line).
The LO potentials reproduce phase shifts for momenta prel �
as,t

−1, while the NLO interactions extends the range to prel �
rs,t

−1. Results are consistent with our expectation from EFT
as confirmed by blue and red shaded areas which correspond
to EFT uncertainty in phase shift at LO [O( prel

�
)] and NLO

[O( p2
rel

�2 )], respectively. In addition, the LO and NLO phase
shifts at different cutoffs lie within the estimated error bands.
We note that the estimate of uncertainty in Fig. 9 at each
order is scaled by a constant factor of natural size such that
the uncertainty in phase shifts at LO spans the actual data and
NLO uncertainty (as done in Ref. [90]). This constant factor is
observable dependent and can be understood as the largest |ck|
in Eq. (48). The phase shift plots illustrate the quality of the
IR improved potentials. The oscillations that were observed in
Refs. [43,44] are much reduced.

1These results are obtained in momentum space with the momen-
tum integration

∫ ∞
0 dkk2 as used in the harmonic oscillator EFT.

They differ by a factor 4π/(2π )3 from results obtained with the usual
integration measure

∫
d3k/(2π )3.

Our LO results (binding energies and point-proton radii)
for the light nuclei 3H and 3,4He, computed with a trans-
lationally invariant no-core-shell model [91], are collected
in Table III. The results for NN interaction alone exhibit a
strong cutoff dependence. This dependence becomes much
weaker once the NNN contact is included. At LO with NNN
forces included, the nucleus 4He is underbound. This result
is consistent with the results reported by Kirscher et al. [15],
also obtained at lower cutoffs (though the authors expressed
some doubts regarding the convergence of their calculation).

FIG. 9. Phase shifts in the partial waves 1S0 (a) and 3S1 (b)
from IR improved potentials at NLO (red dashed) and LO (blue
dot-dashed), respectively, in a model space N = 8, h̄ω = 22 MeV,
l = 0. The black curves shows the neutron-proton phase shifts of the
CD-Bonn potential. The blue (biggest) and red (smallest) shaded area
correspond to EFT uncertainty at LO and NLO, respectively.
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TABLE III. Binding energies and point-proton radii of A � 4
nuclei using NN and NN + NNN pion-less EFT interactions at LO
and defined in model space N = 8.

LO NN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)

5 232.35 8.65 1.78 8.04 1.89 26.81 1.79
10 328.59 13.34 1.31 12.49 1.37 45.45 1.28
22 487.38 23.69 0.91 22.46 0.95 88.06 0.87
40 657.19 38.31 0.69 36.65 0.71 149.88 0.65

LO NN + NNN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)
5 232.35 8.482 1.79 7.87 1.90 26.05 1.79
10 328.59 8.482 1.46 7.71 1.60 22.40 1.44
22 487.38 8.482 1.29 7.54 1.46 17.66 1.46
40 657.19 8.482 1.23 7.41 1.42 17.55 1.42

Table IV shows our results for light nuclei at NLO. We
note that the NLO results for NN interactions alone are close
to the data, i.e., E(3H) = 8.48 MeV, E(3He) = 7.5 MeV, and
E(4He) = 28.5 MeV, and depend very weakly on the cutoff
over the considered range of cutoffs. Similar comments apply
to the radii. Including the NNN contact further reduces the
cutoff dependence, and the 4He nucleus is close to its physical
point. Our finite oscillator regulated NN interaction breaks
down at a UV cutoff of about 650 MeV (see Appendix E).
Therefore we limit our calculations to moderate cutoffs.

Let us discuss theoretical uncertainties. The three con-
tributions to the error budget are (i) neglected higher-order
terms of the interaction, (ii) uncertainties in the LECs due
to uncertainties of the input, and (iii) the convergence of the
calculations with respect to the model space. For the nuclei
discussed here, only the first contribution is relevant. The third
contribution to the uncertainties yields very small corrections
as shown in Appendix H.

Based on the power counting in pion-less EFT, the uncer-
tainty for observable X is expected to be of the form [92]

�X = X0(c1Q + c2Q
2 + · · · ), (48)

TABLE IV. Binding energies and point-proton radii of A � 4
nuclei using NN and NN + NNN pion-less EFT interactions at NLO
and defined in model space N = 8.

NLO NN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)

5 232.35 7.94 1.82 7.35 1.97 25.03 1.80
10 328.59 10.11 1.49 9.34 1.61 36.24 1.34
22 487.38 8.62 1.62 7.90 1.82 30.39 1.41
40 657.19 8.97 1.62 8.30 1.77 29.95 1.53

NLO NN + NNN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)
5 232.35 8.482 1.80 7.88 1.93 27.52 1.79
10 328.59 8.482 1.59 7.75 1.75 27.30 1.43
22 487.38 8.482 1.63 7.77 1.83 29.30 1.44
40 657.19 8.482 1.65 7.82 1.82 27.35 1.58

TABLE V. Relevant values of physical and lattice QCD data
(all in MeV), namely the pion mass mπ , the nucleon mass m, the
dineutron binding energy Bnn, the deuteron binding energy Bd , the
triton binding energy Bt , the singlet and triplet scattering lengths npas

and at , respectively, the singlet and triplet effective ranges nprs and
rt , respectively.

Nature Lattice

mπ 139.5 ± 0.1 [95] 806. ± 1 [10]
m 939. ± 1 [96] 1634. ± 18 [10]
Bnn 15.9 ± 4 [10]
Bd 2.2245 19.5 ± 5 [10]
Bt 8.482 [97] 53.9 ± 10.7 [10]
npas

−1 −8.31 [98] 84.7 ± 18 [94]
nprs

−1 71.75 [98] 174.6 ± 25 [94]
at

−1 36.4 [98] 108. ± 13 [94]
rt

−1 112.18 [98] 217.8 ± 46 [94]

where Q = pF /�b is the typical momentum ratio, expressed
in terms of the Fermi momentum pF and the breakdown scale
�b. The coefficients ck are parameters, expected to be of
natural size. The free Fermi gas estimate

E

A
= 3

10

p2
F

m
(49)

relates the average binding energy to the Fermi momentum,
yielding pF ≈ 150 MeV for 4He. Around the UV cutoff � ≈
650 MeV, we are unable to reproduce the effective range of
the NN interaction and therefore we consider it to be the
breakdown scale (see Appendix E for details) giving a very
conservative Q ≈ 1/3. Consequently, the uncertainty in the
binding energy of 4He at LO is estimated to be about 30%
i.e., �ELO(4He) ≈ 8 MeV. Similarly, at NLO it is estimated
to be around 10% or �ENLO(4He) ≈ 3 MeV. These simple
estimates are also consistent with the change of the α-particle
binding energy resulting from the variation of the UV cutoff
� at each order. Moreover, the LO and NLO binding ener-
gies overlap after including the discussed uncertainties. The
4He binding exhibits a nonmonotonic variation as the cutoff
is increased. A similar behavior was shown in Fig. 14 of
Ref. [93], and this can probably be attributed to the small
cutoff range. We note that the Wigner bound prevents us from
fitting the effective range expansion for cutoffs exceeding
650 MeV; see Appendix E for details. We also note that the
experimental binding energy of 4He (28.3 MeV) falls within
the uncertainties of our NLO result.

B. Lattice nuclei

For lattice nuclei we optimize the LECs using the binding
energies of the deuteron and the dineutron, the effective range
expansion, and the triton binding energy from lattice QCD
data in Refs. [10,94]. The relevant lattice data are compiled
in Table V and compared to the physical point.

At LO, the LECs for the NN contacts are adjusted to the
central values of the binding energies of the deuteron and the
dineutron. The NNN contact is adjusted to the central value of
the triton binding energy. The results are shown in Table VI.
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TABLE VI. The leading order LECs C̃3s1
and C̃1s0

(both in
10−5 MeV−2), and cE (dimensionless) for lattice nuclei (with nu-
cleon mass m = 1634 MeV) for different momentum cutoffs � (in
MeV) obtained from varying the oscillator frequency h̄ω (in MeV),
for interactions in a model space with N = 8.

h̄ω � C̃3s1
C̃1s0

cE

5 306.52 −1.013 613 −0.904 019 −1.731 712
10 433.48 −0.502 300 −0.460 312 −0.433 930
22 642.96 −0.251 429 −0.236 527 −0.086 293
40 866.97 −0.158 373 −0.151 299 −0.025 688

For the NLO potential, we use the data on the effective
range expansion parameters calculated by Beane et al. [94].
In that work, the location of the bound state was used to
constrain the effective range expansion k cot δ, followed by
a two-parameter fit to determine the scattering length and
the effective range. We optimize the NLO interaction by
performing a simultaneous fit to the binding energy and the
effective range expansion in the singlet and triplet S channels.
We determine the NNN contact interaction strength by fitting
it to the triton binding energy. Table VII contains the LECs at
NLO for different cutoffs.

Figure 10 shows the phase shifts for lattice nuclei obtained
at LO (dashed-dotted line) and at NLO (dashed lines). The
input from the effective range expansion (3) is shown as a
solid line with grey uncertainty estimates from lattice QCD.
The blue (biggest) and red (smallest) shaded area correspond
to the EFT uncertainties at LO and NLO, respectively, once
the interaction is optimized to reproduce the central values of
binding energy and effective range expansion parameters in
each channel. We see that the EFT agrees with the input data
at NLO over a considerable range of momenta.

We turn to the calculations of light lattice nuclei. Table VIII
shows the LO results for the binding energies and point-
proton radii of lattice nuclei. At LO, the NN interaction yields
binding energies for 4He that vary by a factor of 2 over
the cutoff range. This dependence is reduced once the NNN
contact is added.

We turn to NLO calculations of light lattice nuclei. The
upper and lower parts of Table IX show the NLO results for
binding energies and point-proton radii with NN potentials
only and with the NNN contact included, respectively. The
cutoff dependence is strong for NN forces alone and much
reduced for the complete calculation including NNN forces.
We note that with the full LO and NLO interaction, our

FIG. 10. Phase shifts for lattice nucleons at mπ = 806 MeV in
the partial waves 1S0 (a) and 3S1 (b) from IR improved potentials
at NLO (red dashed) and LO (blue dot-dashed), respectively, in a
model space N = 8, h̄ω = 22 MeV. The black curves shows the
effective range expansion from lattice QCD [94] with corresponding
systematic plus statistical uncertainties shown as a grey band. The
blue (biggest) and red (smallest) shaded area correspond to EFT
uncertainties at LO and NLO, respectively, once the interaction is
optimized to the central values of the binding energy and the effective
range expansion parameters from lattice QCD results by Beane et al.
[94].

4He binding energy is consistent with the lattice QCD result
(107 ± 34 MeV) by Beane et al. [10].

We note that uncertainty in lattice QCD input is much
larger than the effects from inclusion of the Coulomb
interaction. For instance, the Coulomb interaction changes the

TABLE VII. The next-to-leading order LECs C̃3s1
and C̃1s0

(both in 10−5 MeV−2), and C3s1
and C1s0

(both in 10−10 MeV−4), and cE

(dimensionless) for lattice nuclei (with nucleon mass m = 1634 MeV) for different momentum cutoffs � (in MeV) obtained from varying the
oscillator frequency h̄ω (in MeV), for interactions in a model space with N = 8.

h̄ω � C̃3s1
C3s1

C̃1s0
C1s0

cE

5 306.52 −0.736 443 −1.034 289 −1.216 789 1.180 748 −1.719 559
10 433.48 −0.632 458 0.246 988 −0.854 814 0.760 970 −0.430 321
22 642.96 −0.449 998 0.177 545 −0.691 412 0.423 704 −0.076 720
40 866.97 −0.387 445 0.118 521 −0.853 482 0.471 613 −0.106 436
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TABLE VIII. Binding energies and point-proton radii of A =
3, 4 lattice nuclei at mπ = 806 MeV using NN and NN + NNN
pion-less EFT interactions at LO in model space N = 8.

LO NN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)

5 306.52 64.3 1.57 64.5 1.57 142.7 1.62
10 433.48 76.6 1.13 75.6 1.13 177.5 1.17
22 642.96 99.1 0.78 97.6 0.79 249.6 0.80
40 866.97 127.4 0.60 125.5 0.60 344.7 0.60

LO NN + NNN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)
5 306.52 53.9 1.55 53.1 1.55 98.9 1.57
10 433.48 53.9 1.13 52.9 1.13 88.5 1.15
22 642.96 53.9 0.84 52.5 0.85 70.8 1.05
40 866.97 53.9 0.72 52.2 0.74 68.3 1.09

binding energy of lattice 4He nucleus from 90.7 to 89.7 MeV
at h̄ω = 22 MeV. Therefore, at the current level of precision
we do not worry that the input lattice QCD results from
Ref. [10] do not include the Coulomb photon exchange be-
tween protons on a lattice.

Let us also discuss uncertainties for lattice nuclei. As we
were not able to fit binding energies and the effective range
expansions simultaneously at h̄ω = 70 MeV, we infer a phys-
ical breakdown scale �b ≈ 1150 MeV. From the free Fermi
gas estimate (49) we find pF ≈ 370 MeV based on 4He. We
assume a conservative Q = pF /�b ≈ 0.4, and using Eq. (48)
yields the uncertainty �ENLO(4He) ≈ 15 MeV at NLO for the
binding energy of the α particle. Small changes in binding
energies with variation in UV cutoff are also consistent with
the above estimates. The major uncertainty, however, comes
from the large uncertainties in the input lattice QCD data.
Using the NLO interaction with NN and NNN forces at
h̄ω = 10 MeV, for instance, yields E(4He) = 90 ± 40 MeV
when the LECs are varied within lattice QCD uncertainties.
For the heavier lattice nuclei discussed below, we restrict our
discussion of uncertainties to the case where LECs are fit to
central values of the lattice QCD data in Table V.

TABLE IX. Binding energies and point-proton radii of A = 3, 4
lattice nuclei at mπ = 806 MeV using NN and NN + NNN pion-less
EFT interactions at NLO in model space N = 8.

NLO NN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)

5 306.52 65.2 1.57 64.4 1.57 142.5 1.61
10 433.48 75.8 1.12 74.8 1.13 176.3 1.16
22 642.96 85.4 0.84 84.0 0.88 217.2 0.82
40 866.97 64.6 1.07 63.7 1.21 139.9 1.23

NLO NN + NNN
h̄ω � E(3H) r (3H) E(3He) r (3He) E(4He) r (4He)
5 306.52 53.9 1.55 53.1 1.55 99.0 1.55
10 433.48 53.9 1.14 52.9 1.16 89.9 1.17
22 642.96 53.9 1.04 52.7 1.13 89.7 1.34
40 866.97 53.9 1.17 53.1 1.29 109.7 1.33

IV. RESULTS FOR 16O AND 40Ca

We compute the nuclei 16O and 40Ca with the coupled-
cluster method [24,99,100], performed in the coupled-cluster
singles and doubles (CCSD) approximation. The coupled-
cluster method creates a similarity-transformed Hamiltonian
whose vacuum and ground state is a product state. The pion-
less EFT at NLO does not include spin-orbit forces, and the
coupled-cluster method produces converged results for nuclei
4He, 16O, and 40Ca because the reference product state for
these nuclei exhibit the usual shell closures of the harmonic
oscillator. We find that the atomic nuclei 16O and 40Ca are
not bound with respect to decay into 4He nuclei using our
LO interaction. This is consistent with previous results: Stetcu
et al. [18] found that 6Li is not bound with respect to 4He at
LO, and similar results were also found for lattice nuclei [12].
For these reasons, we report only results at NLO, which do
not exhibit this shortcoming. The NNN potential is employed
in the normal-ordered two-body approximation [101], i.e., it
contributes to the vacuum energy of the Hartree-Fock ref-
erence, and to the normal-ordered one-body and two-body
matrix elements. This approximation is accurate for chiral
potentials where NNN forces do not enter at LO [102].

The coupled-cluster method employs a translationally in-
variant intrinsic Hamiltonian

H = T − Tcm + VNN + VNNN . (50)

Here, T denotes the total kinetic energy and Tcm denotes
the kinetic energy of the center of mass. We note that the
Hamiltonian (50) does not reference the center-of-mass co-
ordinate. This is crucial because the many-body system is
solved in the laboratory system using second quantization.
While the single-particle states are not eigenstates of the total
momentum, the eigenstates of the Hamiltonian (50) factor to
a very good approximation into an intrinsic wave function and
a Gaussian for the center-of-mass coordinate [103].

We remind the readers that interactions were tailored to
the oscillator basis with a maximum energy Nh̄ω in Jacobi
coordinates. The number of matrix elements increases sig-
nificantly when transforming from the center-of-mass coor-
dinates to the single-particle basis in the laboratory system,
and NNN forces can become a bottleneck in the computation
of heavy nuclei. In practical calculations the number of matrix
elements in the laboratory oscillator basis needs to be limited
by imposing a truncation on the maximum energies N1h̄ω and
N3h̄ω of a single particle and of three particles, respectively.
The NNN interaction will be cut at N3, while the relative
kinetic energy and the NN potentials are limited by N1 for
each of the two nucleons. In what follows, we study how the
results stabilize as N1 and N3 are increased.

A. Atomic nuclei

As a check on the quality of the CCSD approximation,
we also computed the binding energy of 4He and found 27.5,
27.2, 29.0, and 27.5 MeV for the interactions with N = 8 and
h̄ω = 5, 10, 22, and 40 MeV, respectively. These results are in
good agreement with the virtually exact no-core shell-model
(NCSM) results presented in Table IV; they suggest that the
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TABLE X. Binding energy of 16O, 40Ca for model space trunca-
tions as indicated, as a function of the cutoff � (or the oscillator
spacing h̄ω). All quantities in units of MeV. A star (∗) indicates
that the energy is approximate and did not yet converge after 1000
iterations of the CCSD equations.

h̄ω � 16O 40Ca

N1, N3 = 12 N1, N3 = 14 N1, N3 = 12 N1, N3 = 14

5 232.35 174.1 174.8 562.5 569.2
10 328.59 136.8 136.2 421.8 415∗

22 487.38 143.1 143.1 405.8 405.8
40 657.19 144.7 146.2 372.2 400.0

normal-ordered two-body approximation of the NNN force is
accurate. The small differences of about 1% between CCSD
and NCSM results is most likely due to neglected triples
excitations. For a light nucleus such as 4He, the convergence
with respect to N3 is rapid and easily achieved.

The NLO results for 16O and 40Ca are shown in Table X.
For the larger cutoff values, the NLO binding energies are
within 20% of the experimental values of about 128 and
342 MeV for 16O and 40Ca, respectively. The differences
between our NLO results and experimental data seem roughly
consistent with EFT expectations. The computation also re-
vealed that only about 10% of the binding energy is corre-
lation energy, i.e., the difference between the coupled cluster
and Hartree-Fock results. This small fraction is possibly due
to the absence of any mixing between S and D waves. We note
that the convergence with respect to the three-body energy
N3 is excellent for h̄ω = 22 MeV, but slower for the other
oscillator spacings. For these latter oscillator spacings we also
observe that the N3 convergence is slower for 40Ca than for
16O. The associated uncertainty is highest at h̄ω = 40 MeV,
being about 10%. We note that 4He is virtually converged
at all oscillator spacings. We can only speculate why the
N3 convergence is fastest for h̄ω = 22 MeV: perhaps this
frequency is close to that of the Gaussian center-of-mass wave
function, but this warrants more investigation.

Let us also discuss the consistency of our results. At lowest
cutoffs, binding energies are largest, and 40Ca has a binding
energy per nucleon of about E/A ≈ 14 MeV at h̄ω = 5 MeV.
In a free Fermi gas this leads to a Fermi momentum of
kF ≈ 210 MeV. This is marginally below the cutoff of � ≈
232 MeV at h̄ω = 5 MeV. Thus, it is probably safest to
limit our discussion of results to the calculations involving
oscillator spacings h̄ω � 10 MeV. We note that these results
also exhibit a smaller cutoff dependence. Our results show
that pion-less EFT binds 16O and 40Ca at about 9 and 10 MeV
per nucleon, respectively. Interestingly, these binding energies
are close to results from a chiral EFT at NLO [43]. Figure 11
shows binding energies as a function of the UV cutoff, and the
results at the smallest cutoff are probably inconsistent because
of the proximity of the Fermi momentum.

We use the results of 16O and 40Ca at h̄ω = 22 MeV to
compute the volume, surface, and Coulomb parameters aV ,

FIG. 11. Binding energy per nucleon for atomic 16O (blue tri-
angles), 40Ca (red squares) nuclei against UV cutoff of the NLO
interaction in the model space N = 8, l = 0 from coupled cluster
calculations.

aS , aC , respectively, of the Bethe-Weizsäcker formula

E(A) = aV A − aSA
2/3 − aC

Z2

A1/3
, (51)

which models the energy of a liquid drop. The liquid drop
model addresses bulk properties of nuclear binding. This clas-
sical model does not include effects of nuclear shell structure,
and is not really applicable to light nuclei such as 4He. Thus,
solving Eq. (51) using only doubly magic nuclei might not
reproduce the known values obtained from a global fit (aV =
15.49 MeV, aS = 17.23 MeV, aC = 0.693 MeV). Indeed, the
fit to the experimental data for 4He, 16O, and 40Ca yields
aV = 9.2 MeV, aS = 3.4 MeV, and an unphysical negative
value for the Coulomb parameter. As 4He is probably too light
to perform a three parameter fit of a bulk formula, and we are
limited to doubly magic nuclei, we only use our results for
16O and 40Ca at h̄ω = 22 MeV and omit the Coulomb term
in Eq. (51). This yields aV = 13.5 MeV and aS = 11.5 MeV,
closer to the empirical values of av ≈ 16 MeV and aS ≈
18 MeV.

Let us again discuss uncertainties. We adopt the estimates
made in light nuclei to the present case. Thus, the uncertainty
from the EFT interaction is about 10% at NLO, implying
�ENLO(16O) ∼ 15 MeV and �ENLO(40Ca) ∼ 40 MeV. The
variation of binding energies with UV cutoff at fixed N and
N3 is in this range, and so are the uncertainties from the N3

convergence of coupled cluster results at fixed �.

B. Lattice nuclei

We recompute 4He with the coupled-cluster method and at
NLO we find binding energies E = 98.0, 89.0, and 88.1 MeV
for the interactions with h̄ω = 5, 10, and 22 MeV, respec-
tively. This is in agreement with the NCSM results of Table IX
and suggests that the normal-ordered two-body approximation
of the NNN potential is accurate also for lattice nuclei. Again
we find only a small amount of about 10% for the correlation
energy. The small differences of about 1% between CCSD
and NCSM results is due to neglected triples excitations.
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TABLE XI. Binding energies of the lattice nuclei 16O, 40Ca for
model space truncations as indicated, as a function of the cutoff �

(or the oscillator spacing h̄ω). All quantities in units of MeV.

h̄ω � 16O 40Ca

N1, N3 = 12 N1, N3 = 14 N1, N3 = 12 N1, N3 = 14

22 642.96 429.5 429.5 1187.0 1168.5
40 866.97 547.8 546.0 1252.0 1422.0

In contrast, at h̄ω = 40 MeV we find a 4He binding en-
ergy of 99.5 MeV, which differs from the NCSM result by
about 10%. Closer inspection and varying the strength of
the NNN interaction suggests that this discrepancy is due
to the normal-ordering two-body approximation of the NNN
interaction at this frequency. As the normal-ordered two-body
approximation is expected to improve with increasing mass
number [102], we will also compute 16O and 40Ca at h̄ω =
40 MeV, keeping in mind a conservative 10% uncertainty due
to the normal ordering approximation.

Our results for 16O and 40Ca are shown in Table XI.
We observe that lattice nuclei are bound with approximately
30 MeV per nucleon at h̄ω = 22 MeV. In a free Fermi gas
this corresponds to a Fermi momentum pF ≈ 310 MeV. This
is well below the pion mass employed in the lattice QCD
calculations and also below the corresponding cutoff � =
642.96 MeV of the EFT. For the smaller oscillator spacings
h̄ω = 5 (corresponding to a cutoff of � ≈ 307 MeV), we find
binding energies per nucleon of about 37 MeV for 16O and of
about 50 MeV for 40Ca. The corresponding Fermi momenta
are about 340 and 400 MeV, clearly exceeding the cutoff.
Thus, these calculations are not consistent with the underlying
EFT assumptions. For the oscillator spacing h̄ω = 10 MeV,
i.e., for � ≈ 433 MeV, we find binding energies of about 23
and 22 MeV per nucleon for 16O and 40Ca, respectively. The
corresponding Fermi momenta are about 270 MeV.

As for the light lattice nuclei, the error in the binding
energy at NLO for lattice nuclei is of the order of 15%
which leads to �ENLO(16O) ≈ 75 MeV and �ENLO(40Ca) ≈
200 MeV for 16O and 40Ca lattice nuclei. We remind the
reader that this estimate excludes the dominant uncertainties
due to the limited precision of the lattice QCD results that are
input. At h̄ω = 40 MeV there also is an additional 10% un-
certainty estimate due to the normal ordering approximation
of NNN forces.

We return to the Bethe-Weizsäcker formula (51) for lattice
nuclei, again omit the Coulomb term, and fit the volume and
surface terms to 16O and 40Ca using the results at h̄ω = 22
and 40 MeV. This yields aV ≈ 35 to 40 MeV and aS ≈
14 to 22 MeV.

V. SUMMARY

We implemented pion-less EFT as a DVR in the harmonic
oscillator basis. The DVR formulation has several advantages
over traditional approaches that transform momentum-space
interactions to the oscillator basis: (i) The UV cutoff and
regulator are tailored to the underlying basis; (ii) the DVR

facilitates the computation of matrix elements as this becomes
essentially a function call; (iii) the IR improvement allows
one to optimize interactions directly in the harmonic oscillator
basis. We showed that the DVR formulation indeed yields an
EFT with the correct low-momentum behavior.

To put the DVR in the context of momentum-space EFTs,
we performed many checks and tests, and reported them
in a set of appendixes. The Thomas effect [104] and the
Tjon line [105] can be understood analytically from scaling
arguments that connect the potential matrix elements at dif-
ferent UV cutoffs. Different implementations of the EFT—at
constant UV cutof—yield results that differ by small amounts,
consistent with expectations regarding regulator dependen-
cies.

We calibrated the pion-less EFT for atomic nuclei and for
lattice nuclei (at an unphysical pion mass) in A = 2, 3 systems
and make predictions for 4He, 16O, and 40Ca. At LO 16O and
40Ca are not bound with respect to decay into α particles; this
deficiency is remedied at next-to-leading order. Varying the
UV cutoff by about a factor of 2 suggests that pion-less EFT at
next-to-leading order yields meaningful results for the binding
energies of medium-mass nuclei that are consistent with chiral
EFT calculations at that order.

Our results also suggest that medium-mass nuclei can
be connected to lattice QCD input. Further progress in this
direction, however, requires a resolution of the controversy
between the different lattice QCD approaches to light nuclei,
increasing the precision of the lattice QCD results that are
input to EFTs, and finally, moving towards the physical pion
mass.
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APPENDIX A: OVERVIEW OF APPENDIXES

The formulation of pion-less EFT as a DVR in the oscilla-
tor basis invites questions regarding details of the implementa-
tion and its relation to established results. In these appendixes,
we address a few relevant points. In Appendix B we show that
a continuous family of DVR formulations exists, including
one that exhibits a zero-momentum point. In Appendix C we
show that the IR improvement of the LO two-body contact
exhibits effective-range corrections that are parametrically
small and inverse proportional to the number of DVR states.
In Appendix D we derive simple scaling laws that govern the
potential matrix elements as the oscillator frequency or the
nucleon mass is varied. This makes it particularly simple to
relate matrix elements corresponding to different UV cutoffs
and to different nucleon masses. It also allows us to derive
known relations such as the Thomas effect [104] or the
Tjon [105] correlations. In Appendix E we confirm that our
formulation of pion-less EFT obeys the Wigner bound [106].
In Appendix F we study the regulator dependence of our
EFT by comparing different combinations of (N, h̄ω) that
yield similar UV cutoffs. In Appendix G we discuss the
effects of oscillator basis truncation on NNN contact with
cutoff in Jacobi momenta. Finally, Appendix H is dedicated
to IR extrapolations. There, we show that Lüscher-like [80]
formulas account for finite-size corrections that stem from
finite harmonic oscillator spaces

APPENDIX B: DVR WITH A ZERO-MOMENTUM POINT

A discrete variable representation (DVR) in momentum
space consists of basis functions φ̃μ,l (k) that are orthogonal
to each other and localized around certain discrete momentum
points. Let us start by expressing the DVR basis in terms of
oscillator wave functions,

φ̃κ,l (k) = dκ,l

Nl∑
n=0

ψ̃n,l (κ )ψ̃n,l (k). (B1)

Here κ is a discrete momentum (to be determined) and dκ,l

is a normalization constant. The DVR wave function ˜φκ,l is
the projection of a spherical wave with momentum κ onto the
finite harmonic oscillator basis. To see this, we start from the
completeness relation

∞∑
n=0

ψ̃n,l (κ )ψ̃n,l (k) = δ(k − κ )

kκ
, (B2)

and note that this is also the orthogonality condition for
spherical waves with momenta k and κ , respectively.

We need to determine the DVR points κ = κμ in the
wave function (B1) such that wave functions belonging to
different κμ are orthogonal to each other. Here μ enumerates
the discrete set of momenta (the DVR points). The overlap

FIG. 12. Solid red curve: The ratio R of Eq. (B5) as a function
of the momentum in a model space N = 8, h̄ω = 22 MeV, and l =
0. The dashed-dotted horizontal line corresponds to R = 0, and its
intersection with the red curve, denoted by solid blue dots, yields the
DVR points we used in the main text. The dashed line corresponds
to the ratio R = R0 in Eq. (B6), and the intersection of this line with
red curve, denoted by solid black triangles, marks the DVR points of
the DVR discussed in this Appendix.

between two such wave functions is∫ ∞

0
dkk2φ̃κμ,l (k)φ̃κν ,l (k)

= dκμ,ldκν ,l

Nl∑
n=0

ψ̃n,l (κμ)ψ̃n,l (κν )

= dκμ,ldκν ,l

√
(Nl + 1)(Nl + l + 3/2)

× ψ̃Nl,l (κμ)ψ̃Nl+1,l (κν ) − ψ̃Nl+1,l (κμ)ψ̃Nl,l (κν )

b2
(
κ2

μ − κ2
ν

) . (B3)

For κμ �= κν , orthogonality implies

ψ̃Nl+1,l (κμ)

ψ̃Nl,l (κμ)
= ψ̃Nl+1,l (κν )

ψ̃Nl,l (κν )
, (B4)

and we can solve for DVR points κμ by demanding that

ψ̃Nl+1,l (κμ)

ψ̃Nl,l (κμ)
= R, (B5)

with R being a constant.
Figure 12 shows the ratio in Eq. (B5) as a a function of

momentum (red curve) for a model space with N = 8 and
l = 0. The dashed-dotted horizontal line R = 0 yields the blue
circles as intersection points; these are the DVR points we
employed in the main text of this paper. The dashed horizontal
line

R = ψ̃Nl+1,l (0)

ψ̃Nl,l (0)
=

√
Nl + l + 3/2

Nl + 1
(B6)

yields the black triangles as intersection points. This is the
DVR we seek as it contains the point k = 0. We note that there
is a continuous set of DVRs, each being identified by the value
of R.
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To find the DVR points κμ, we solve

0 =
√

Nl + l + 3/2

Nl + 1
ψ̃Nl,l (κ ) − ψ̃Nl+1,l (κ ), (B7)

which is equivalent to

0 = (N + l + 3/2)Ll+1/2
Nl

(κ2b2) − (Nl + 1)Ll+1/2
Nl+1 (κ2b2)

= κ2b2L
l+3/2
Nl

(κ2b2). (B8)

In the last step we used formula 8.971(4) of Ref. [107]. Thus,
the DVR points are κ = 0 and the Nl roots of the polynomial
L

l+3/2
Nl

(κ2b2). It is understood that discrete momentum points
are different for each partial wave and to keep our notation
simpler we denote them by κμ instead of κμ,l .

We note that Eq. (B5) only exhibits Nl solutions for R >
ψ̃Nl+1,l (0)/ψ̃Nl,l (0). For R → +∞, for instance, the solu-
tions are Nl zeros of the generalized Laguerre polynomial
L

l+1/2
Nl

(κ2b2). This yields only Nl DVR functions. The re-
maining basis function is ψ̃Nl+1,l (k), but the resulting set of
Nl + 1 basis functions is no longer a DVR.

We return to Eq. (B4) and compute the normalization for
DVR wave functions whose momenta fulfill Eq. (B8). This
yields

d−2
κμ,l = −

√
Nl (Nl + 1)(Nl + l + 3/2)

× ψ̃Nl−1,l+1(κμ)ψ̃Nl+1,l (κμ)

κμb

= (Nl + l + 3/2)
[
ψ̃Nl,l (κμ)

]2

= (Nl + 1)
[
ψ̃Nl+1,l (κμ)

]2
. (B9)

To derive this result, we employ the rule of l’Hospital,
Eq. 8.971(2) from Ref. [107], and the recurrence relations
between Laguerre polynomials. Returning to Eq. (B1) we
compute

φ̃κμ,l (k) = k

b
(
k2 − κ2

μ

) ψ̃N,l+1(k). (B10)

We note that the norm d0,l diverges as (kb)l for κ = 0 and
l > 0. The corresponding localized eigenfunction in Eq. (B1)
remains finite because ψ̃n,l (0) ∝ (kb)l and we have

φ̃0,l (k) =
√

Nl!�(l + 5/2)

�(Nl + l + 5/2)�(l + 3/2)

×
Nl∑

n=0

√
�(n + l + 3/2)

n!
ψ̃n,l (k

2b2). (B11)

We want to compare the DVR of this appendix to the one
we used in the main text of the paper. In the large N0 limit,
the (l = 0) wave functions of the latter DVR are essentially
j0(kμ,0r ) with kμ,0 ≈ μπ/L. In contrast, the DVR points
κμ of the DVR developed in this appendix which explicitly
include k = 0 momentum satisfy κμ ≈ (2μ + 1)π/(2L), i.e.,
the DVR wave functions approach a Neumann boundary
condition close to r = L. For other values of the ratio R of

FIG. 13. The red curve shows the contact realized in a DVR with
a zero-momentum point, in comparison with the original momentum-
space contact shown as a dashed-dotted black line. The solid dots
represent the DVR momenta. Note that k = 0 is a DVR point. Panel
(a) [panel (b)] is for NN LO (NLO) interaction in pion-less EFT.
The vertical black dotted line depicts the UV cutoff introduced by
finite harmonic oscillator basis space with l = 0, N = 8, and h̄ω =
22 MeV.

Eq. (B6), one obtains mixed boundary conditions close to
r = L.

Let us compute the S-wave NN contacts v(k) = 1 at LO
and w(k) = k2 at NLO in this DVR. The results are shown
as solid red lines in Figs. 13(a) and 13(b), respectively. The
original momentum-space interaction is plotted as a black
dashed-dotted line. Dots represent the new discrete momenta,
now including k = 0. The model-space parameters are N = 8
and h̄ω = 22 MeV.

While these DVR potentials are slightly more oscillatory
than the IR-improved DVR potential in Figs. 2 and 4, they re-
produce the original momentum-space interaction much better
than the other DVR without IR improvement (red dashed
curves in Figs. 2 and 4).

This makes it interesting to compute phase shifts with the
DVR of this Appendix. Figure 14 shows the LO and NLO
np phase shifts from the DVR interaction in 1S0 [panel (a)]
and 3S1 [panel (b)] partial wave channels. Since at NLO NN
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FIG. 14. The 1S0 (a) and 3S1 phase shifts (b) from a DVR po-
tential at NLO (LO) in pion-less EFT in a model space N = 8, h̄ω =
22 MeV at NLO (red dashed line) and LO (blue dot-dashed line). The
black curve shows the neutron-proton phase shifts of the CD-Bonn
potential.

interaction in the DVR representation has incorrect curvature
at k = 0, the NLO phase shifts are slightly oscillatory in both
channels in comparison to phase shifts from IR improved
interaction in the other DVR. Even so, we find it to be a simple
alternative to the IR improvement.

APPENDIX C: IR IMPROVEMENTS
AND EFFECTIVE RANGE

We want to understand the quality of the IR improvement
of the NN contact. As the number of DVR states N0 is finite,
we have to understand finite-size effects. Here, we focus on
the curvature of the function (25) at k = 0, as this introduces
a finite range correction. To understand the finite size effects,
we recall that—at low momenta and long wavelengths—the
spherical harmonic oscillator basis is indistinguishable from
a spherical cavity with radius L = π/k0,0. This allows us
to understand finite-size effects in the oscillator DVR by
studying corresponding effects in a spherical cavity.

We therefore consider a spherical cavity of radius L. Eigen-
functions for S waves with momentum kμ are spherical Bessel
functions j0(κr ). In momentum space, the corresponding

wave function results from a Fourier-Bessel transform,

ψ̃κ (k) ≡ 2

π

∫ L

0
drr2j0(κr )j0(kr )

= 1

πκk

(
sin(k − κ )L

k − κ
− sin(k + κ )L

k + κ

)
. (C1)

The momentum-space function ψ̃κ (k) is a smeared Dirac-δ
function with a peak at k = κ and also exhibits oscillations.
As a check, we see that ψ̃κ (k) → δ(k − κ )/(κk) for L → ∞.
The expression (C1) can be simplified when it is evaluated at
the quantized momenta of

kμ ≡ μπ

L
. (C2)

Then we have

ψ̃kμ
(k) = 2L(−1)μ

π

j0(kL)

k2 − k2
μ

. (C3)

In particular, the DVR property is

ψ̃kμ
(kν ) = δν

μc−1
μ (C4)

with

c−1
μ ≡ L3

π3μ2
. (C5)

To see the analogy with the oscillator DVR, we note that
ψ̃kμ

(k) ↔ ψ̃μ,0(k), and that cμ ↔ cμ,0. In an EFT based on N
spherical Bessel functions, we would approximate the contact
function vDVR(k) of Eq. (23) as

ṽ(k) ≈
N∑

μ=1

cμψ̃kμ
(k). (C6)

Here, the tilde indicates that this function exhibits oscillations.
By construction, ṽ(kμ) = 1, but this function is certainly
not a constant. It has an oscillatory component, and at zero
momentum we have

ṽ(0) =
{

2 for N odd,
0 for N even.

(C7)

This suggests to make an IR improvement by adding one
more basis function with momentum kN+1, and with half the
usual amplitude. (Alternatively, we could reduce the ampli-
tude at kN by a factor 2 as is approximately done for the
oscillator DVR; see Fig. 2.) This yields

v(k) =
N∑

μ=1

cμψ̃kμ
(k) + cN+1

2
ψ̃kN+1 (k)

= 2j0(kL)
N∑

μ=1

(−1)μμ2(
kL
π

)2 − μ2

+j0(kL)
(−1)N+1(N + 1)2(

kL
π

)2 − (N + 1)2
. (C8)

By construction, v(kμ) = 1 for μ = 1, . . . , N and v(0) =
1. The function v exhibits oscillations with a much reduced
amplitude in comparison to ṽ, and it is an even function in
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k. To gauge its quality in the IR, we compute its curvature at
k = 0. For k → 0 we find

v(k) ≈ 1 − k2L2

π2

⎡
⎣π2

6
+ 2

N∑
μ=1

(−1)μ

μ2
− (−1)N

(N + 1)2

⎤
⎦.

(C9)

We use
K∑

n=1

(−1)n

n2
= 1

2

[K/2]∑
n=1

1

n2
−

K∑
n=1

1

n2
. (C10)

Here, [x] denotes the integer part of x. We rewrite

K∑
n=1

1

n2
=

∞∑
n=1

1

n2
−

∞∑
n=K+1

1

n2
= π2

6
−

∞∑
n=K+1

1

n2
, (C11)

and employ the Euler-Maclaurin summation formula
∞∑

n=K+1

1

n2
= 1

K
− 1

2K2
+ O(K−3). (C12)

Thus, the expansion (C9) becomes

v(k) ≈ 1 + O
(

(kL)2

N3

)
. (C13)

This result is also confirmed numerically. Using L� ∝ N , we
see that the quadratic correction scales as

1

N

(
k

�

)2

. (C14)

Thus, the effective range correction of the IR-improved con-
tact is parametrically small as the number N of DVR points
increases. This is an interesting and encouraging result. The
IR improved contact in an EFT based on the lowest N
discrete momentum states of a spherical cavity exhibits small
effective-range corrections proportional to 1/N . This correc-
tion vanishes as N → ∞ and is clearly a finite-size effect.

We also note here that the IR improvement of the contact
essentially reduces the weight of the eigenfunction corre-
sponding to the largest momentum by a factor of about 0.5.
This suggests a simple way to perform IR improvements.
In the partial wave with angular momentum l we introduce
nonlocal regulators for the potential via

V (p′, l′; p, l) → e
−(p′/kNl′ ,l′ )2n

V (p′, l′; p, l)e−(p/kNl ,l
)2n

.

This widely used regulator approximately introduces the fac-
tor 1/2 reduction at about the right momentum. In practice we
find that this simple procedure works quite well, in particu-
lar for chiral interactions where analytical IR improvements
might be more tedious.

APPENDIX D: THOMAS EFFECT AND TJON LINE

In this Appendix, we derive simple scaling relations that
hold at fixed N . We will use them to explain the key results the
Thomas effect [104] (i.e., the increase of binding in the three-
nucleon system with increasing cutoff of the NN interaction)
and the Tjon line [105] (i.e., the correlation between binding

energies of the A = 3 and A = 4 bound states). These results
suggest that the EFT as a DVR in the oscillator basis is also
useful to obtain analytical insights.

In what follows we vary the UV cutoff (7) at fixed number
of oscillator shells N by changing the oscillator length b, i.e.,
the oscillator frequency h̄ω. We also allow the nucleon mass
to vary, as this will be useful with view on lattice nuclei. As
we will see, varying h̄ω or nucleon mass m simply rescales the
matrix elements of the contact interactions and kinetic energy
in the oscillator EFT.

From Eqs. (14) and (9) we find ψ̃n,l (k) ∝ b3/2, cμ,l ∝
b−3/2, and kμ,l ∝ b−1. Thus, the roots of the generalized La-
guerre polynomial L

l+1/2
N+1 (k2b2) do not change, and a rescal-

ing of b and m simply changes the matrix elements of the LO
contact, the NLO contact, and the three-nucleon force as

VLO ∝ CLOb−3 ∝ CLO(mh̄ω)3/2,

VNLO ∝ CNLOb−5 ∝ CNLO(mh̄ω)5/2, (D1)

VNNN ∝ CNNNb−6 ∝ CNNN (mh̄ω)3,

respectively. The Schrödinger equation for two nucleons at
leading order in either the 1S0 or the 3S1 partial wave is

h̄2

mb2

(
t̂2 + mh̄

CLO

b
v̂2

)
|ψ〉 = E2|ψ〉. (D2)

Here, t̂2 and v̂2 are dimensionless matrices of the kinetic and
potential energies, respectively. Thus,(

t̂2 + mh̄
CLO

b
v̂2

)
|ψ〉 = E2

h̄ω
|ψ〉 ≈ 0. (D3)

The last approximation is exact in the case of an infinite
scattering length or a zero-energy bound state. It is a good
approximation in general as most model spaces of ab initio
calculations have E2/(h̄ω) � 1. Thus,

CLO

b
mh̄ = const. (D4)

This relation implies CLO ∝ (h̄ω)−1/2 and is the oscillator-
EFT equivalent of the well-known relation CLO ∝ (m�)−1 in
the momentum-space formulation of pion-less EFT at infinite
scattering length (or zero-energy bound states).

Let us now consider the Schrödinger equation for the A-
body system, based on NN interactions at LO. We find similar
to Eq. (D2) that

EA|ψ〉 = h̄2

mb2

(
t̂A + mh̄

CLO

b
v̂A

)
|ψ〉 = h̄2

mb2
ĥA|ψ〉. (D5)

Here, t̂A, and v̂A are the dimensionless matrices for the ki-
netic and potential energy in the A-body system, respectively.
These quantities do not depend on the oscillator length. We
note that ĥA is a dimensionless matrix that is independent of
b because of the scaling relation (D4). Thus,

EA ∝ h̄2

mb2
= h̄ω. (D6)

This scaling relation explains the Thomas effect [104]: the
binding energy of the A = 3 system increases with decreasing
range of the potential, i.e., with increasing cutoff or increasing
h̄ω. It also explains the Tjon line [105], i.e., the correlation
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FIG. 15. Correlation between the triton and 4He binding ener-
gies, computed in LO with NN interactions from pion-less EFT.
Different points correspond to different UV cutoffs.

between the binding energies of the A = 3 and A = 4 nuclei.
Of course, both effects led to beautiful insights regarding the
renormalization of the A = 3 body system via a three-body
force [66] and the Tjon line as a generic property of systems
with large scattering lengths [13]. To illustrate our analytical
insights we use the results obtained for NN potentials alone
(see, e.g., Table III) and show the Tjon correlations, i.e., the
proportionality of the binding energies for A = 3 nuclei and
4He in Fig. 15.

APPENDIX E: LARGE UV CUTOFFS
AND THE WIGNER BOUND

Based on the Wigner [106] bound on the derivative of
phase shifts, Phillips and Cohen [108] showed that the effec-
tive range re of the potential obeys the inequality

re � 2

(
R − R2

a
+ R3

3a2

)
. (E1)

Here, R is the physical range of the potential, i.e., the radius
beyond which the potential is zero and a is the scattering

FIG. 16. The effective range in the singlet S wave (red line) as a
function of the UV cutoff. The blue line shows the Wigner bound.

FIG. 17. The dash-dotted green (solid magenta) curve shows the
NN interaction in model space N = 6, h̄ω = 26.63 MeV, (N =
10, h̄ω = 18.74 MeV). The dashed blue curve shows the same
interactions in model space N = 8, h̄ω = 22 MeV. Panels (a) and
(b) correspond to NN interaction at LO and NLO, respectively. All
three cases have a momentum cutoff � ≈ 487 MeV.

length. As the physical range scales as R ∝ �−1 for interac-
tions with a UV cutoff �, it is clear that the effective range
expansion (3) cannot be reproduced at sufficiently large UV
cutoffs. How does the EFT employed in this work reflect this
behavior?

Figure 16 shows the effective range in the singlet S wave
(red curve) obtained from a fit to the effective range expan-
sion (3) for NLO interactions regularized in a finite harmonic
oscillator basis with N = 8. The UV cutoff is increased by in-
creasing the oscillator spacing h̄ω. For each cutoff, the LECs
of the NLO potential are obtained from a χ2-fit to low energy
phase shifts, and the χ2 objective function contains NLO
uncertainty estimates. For cutoffs exceeding � ≈ 650 MeV,
we are unable to reproduce the effective range of the NN
interaction. The dashed black curve shows the Wigner bound,
i.e., the equality sign holds in Eq. (E1). We see that our
EFT obeys the Wigner bound. We also note that the effective
range seems to approach zero for very large cutoffs. Negative
effective ranges (as discussed in Ref. [108]) are not realized
in our EFT.
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TABLE XII. The LECs of the NN potential at LO for physical
nuclei at constant � ≈ 487 MeV and varying model space size.

N h̄ω C̃3s1
C̃1s0

6 26.63 −0.407 880 −0.313 361
8 22 −0.379 465 −0.296 100
10 18.74 −0.360 988 −0.284 491

APPENDIX F: REGULATOR EFFECTS

In the DVR implementation of pion-less EFT, the UV
cutoff (7) can be varied at fixed N by changing the oscillator
frequency h̄ω. Strictly speaking the variation of h̄ω also
changes the IR cutoff, but the IR improvement essentially
eliminates the effect of this variation on the potential.

In this Appendix we will consider different combinations
of (N, h̄ω) that keep the UV cutoff constant and thus corre-
spond to different regulators. In an EFT, regulator dependen-
cies are expected to be higher-order effects. Thus, we expect
that IR improved interactions with an identical UV cutoff but
different (N, h̄ω) combinations should yield similar results
for finite nuclei. How small can N be chosen? Semiclassical
arguments indicate that the number N should scale as N ∝
A1/3 so that all nucleons are indeed interacting. But besides
this, there seems to be little to be gained by considering
(unnecessary) large interaction spaces.

To probe regulator dependencies, we consider model
spaces with combinations N = 6, h̄ω = 26.63 MeV, N = 8,
h̄ω = 22 MeV, and N = 10, h̄ω = 18.74 MeV; these have
a similar UV cutoff � ≈ 487 MeV. Figure 17 shows that
the IR-improved potentials v(k) = 1 at LO and w(k) = k2 at
NLO are similar for the different model spaces. Due to the
IR improvement, the effective UV cutoff decreases somewhat
with decreasing N , but the differences are small, particularly
at low momenta. This suggests that the different model spaces
translate into small differences in the effective regulator func-
tions.

We fit the NN potential at LO to the scattering lengths
and the deuteron binding energy. The resulting LECs are
shown in Table XII. We note that the LECs exhibit only a
small dependency on the model space, keeping up with EFT

TABLE XIII. NN LECs at NLO for physical nuclei at constant
� ≈ 487 MeV and varying model space size.

N h̄ω C̃3s1
C3s1

C̃1s0
C1s0

6 26.63 −0.792 415 0.834 806 −0.571 535 0.469 715
8 22 −0.809 378 0.772 254 −0.612 966 0.691 221
10 17.84 −0.798 677 0.693 435 −0.587 451 0.614 043

expectations that regulator dependencies at similar cutoffs are
higher-order effects.

We turn to the NN interaction at NLO and employ the
effective ranges as additional constraints to determine the
LECs. Table XIII shows the results. Again we observe a mild
dependence of the model space, and this is again consistent
with EFT expectations that regulator dependencies are higher-
order effects.

We turn to the NNN contact. Figure 18 compares NNN
function ū(k, p) regulated in hyper-radial momentum for
three model spaces of interest. All three interactions are
quite similar, particularly at low momenta. We note that this
observation also extends to NNN contact when regulated in
each Jacobi momentum.

We include the NNN contact and determine its LEC by
adjusting to the triton binding energy. We perform two inde-
pendent computations of the ground-state energies and matter
radii of A = 3, 4 nuclei (at a physical pion mass) from these
NN interactions at LO and NLO, and present the results in
Table XIV.

We also performed calculations where the NNN interaction
is regulated in each of the Jacobi momenta. Table XV shows
the results. The comparison with Table XIV shows that regu-
lator differences in the NNN contact are small, as expected in
an EFT.

APPENDIX G: EFFECTS OF OSCILLATOR BASIS
TRUNCATION ON NNN CONTACT

In this Appendix we discuss the effects of an oscillator
basis truncation where the NNN interaction matrix elements
of the oscillator states with n1 + n2 > N3 are set to zero.
Here and throughout this appendix, n1 and n2 are principal

FIG. 18. Momentum space matrix elements ū(k, p) = cμ,0cν,0u
IR
DVR(

√
k2 + p2) in harmonic oscillator basis with N = 6 (left), 8 (center),

and 10 (right) with identical UV cutoff. The x and y axes represent Jacobi momenta in fm−1.
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TABLE XIV. Binding energies and radii for A = 3, 4 nuclei at
constant � ≈ 487 MeV and different model spaces employing a
hyperspherical regulator for the NNN contact. The NNN coupling cE

is adjusted to reproduce the triton binding energy Bt = 8.482 MeV.

E3max = N (triangular)
LO

N cE r (3H) E(3He) r (3He) E(4He) r (4He)

6 −0.269 308 1.30 7.55 1.47 18.28 1.45
8 −0.238 514 1.29 7.52 1.46 17.66 1.46
10 −0.218 702 1.28 7.50 1.45 17.27 1.46

NLO
N cE r (3H) E(3He) r (3He) E(4He) r (4He)
6 −0.073 289 1.58 7.71 1.77 28.39 1.36
8 −0.008 170 1.63 7.77 1.83 29.30 1.44
10 −0.024 851 1.63 7.77 1.82 27.90 1.51

harmonic oscillator quantum numbers for a three-nucleon
system in intrinsic Jacobi coordinates.

The NNN contact with the hyperspherical cutoff in Eq. (44)
remains unaffected by this truncation for N3 � N , because it
fulfills n1 + n2 � N by construction. This is the key reason
why we chose to work with the hyperspherical regulator in
this paper. On the other hand, the IR improved NNN inter-
action (34) with cutoff in Jacobi momenta is affected by this
truncation once N3 < 2N . As shown in Fig. 19, lowering N3

below 2N = 16 significantly modifies the NNN contact with
cutoff in Jacobi momenta after truncation. Here, N3 = 6, 8,
and 10 are shown by the dash-dotted green, dashed blue, and
solid magenta lines respectively.

Not surprisingly, in the truncated bases with N3 < 2N =
16 the ground-state energy of 4He exhibits a strong depen-
dence on the N3 truncation. In an effort to reduce the number
of matrix elements of the NNN force, we also employed
the NNN contact (34) such that the interaction vanishes for
n1, n2 > N/2. (This would still keep NNN excitations up to
Nh̄ω in the potential.) Choosing combinations of N and h̄ω
that exhibit similar UV cutoffs, we found that the 4He binding
energy increases with increasing N for this truncation.

TABLE XV. Same as Table XIV but for regulators in each Jacobi
coordinate of the NNN force.

E3max = 2N (square)
LO

N cE r (3H) E(3He) r (3He) E(4He) r (4He)

6 −0.224 040 1.33 7.58 1.49 21.28 1.51
8 −0.191 847 1.32 7.56 1.48 20.82 1.40
10 −0.171 713 1.31 7.55 1.47 23.07 1.38

NLO
N cE r (3H) E(3He) r (3He) E(4He) r (4He)
6 −0.059 819 1.58 7.71 1.78 28.34 1.40
8 −0.006 553 1.68 7.77 1.83 29.27 1.45
10 −0.020 162 1.63 7.77 1.66 28.13 1.51

FIG. 19. The vDVR of NNN interaction (34) reconstructed only
from interaction matrix elements in remaining harmonic oscillator
basis states after n1 + n2 � N3 truncation. Dashed-dotted green line:
NNN interaction in model space N3 = 6 and h̄ω = 26.63 MeV;
dashed blue line: N3 = 8 and h̄ω = 22 MeV; solid magenta line:
N3 = 10 and h̄ω = 18.74 MeV. All three cases have the same
momentum cutoff � ≈ 487 MeV. The dotted black line shows the
original momentum space interaction v = 1.

APPENDIX H: IR EXTRAPOLATIONS

The EFT formulation in the harmonic oscillator basis
provides us with a UV cutoff that is tailored to the model
space, and this makes UV extrapolations [77] unnecessary.
To overcome finite-volume effects, one can employ IR ex-
trapolations. The corresponding extrapolation [75] formulas
generalize Lüscher’s approach [80] to the harmonic oscillator.

The EFT potential is defined in a model space of size N .
For the Hamiltonian matrix we choose Nmax � N such that
the potential is active only between states with energy E �
Nh̄ω, while the kinetic energy is active in the full space, i.e.,
in all states with energy E � Nmaxh̄ω. (Here, we neglected the
zero-point energy.) As Nmax increases the radius L associated
with the harmonic oscillator basis also increases, and the
tail of the bound-state wave function becomes increasingly
accurate. For energies, we have [75]

E(Nmax) = E∞ + ae−2k∞L (H1)

as the leading correction for k∞L � 1. For the deuteron, k∞
is the bound-state momentum [76] and L is calculated using
the Eq. (6). In general, k∞ is the separation momentum of the
lowest breakup channel [86,87], i.e.,

S = h̄2k2
∞

2m
(H2)

is the separation energy of the lowest-lying breakup channel.
This suggests that the relevant small momentum scale ksep

might be much larger than the low-momentum scales encoun-
tered in the deuteron and in the effective range expansion of
the nuclear force. A separation energy of 8 MeV, for instance,
corresponds to a separation momentum of about 120 MeV.

Let us illustrate the extrapolation using the example of
the deuteron at NLO and in a model space N = 8 for
the potential. Figure 20 shows that the energy difference

054301-21



A. BANSAL et al. PHYSICAL REVIEW C 98, 054301 (2018)

FIG. 20. Difference of the deuteron binding energy in a finite
space of size L and the infinite-space result for h̄ω = 40 MeV (solid
red dots) and 22 MeV (solid blue squares) for our NLO oscilla-
tor EFT potential in model space N = 8. The dashed black line
shows a exp (−2k∞L) where k∞ ≡ 0.2316 fm−1 is the separation
momentum.

�E ≡ E(Nmax) − (E∞)actual converges exponentially fast as
a function of L. Solid red dots (solid blue squares) h̄ω =
40 MeV (22 MeV), and the dashed black line is the function
a exp (−2k∞L) with a ≈ 15 MeV and the separation mo-
mentum 0.2316 fm−1. We note that the exponential decay is
indeed governed by the separation momentum and that the
equality of this momentum and k∞ is much more accurate
here than reported in Ref. [76]. The reason is presumably the
fully achieved UV convergence in the present approach.

Though the no-core shell-model calculations for A = 3, 4
nuclei are virtually converged with respect to the model space,
it is still useful to consider IR extrapolation. At low energies,
the harmonic oscillator is indistinguishable from a spherical
cavity of radius L. For the no-core shell model, the radius L is
a known function of the number of shells N and the frequency
h̄ω of the employed basis [79]. The NLO calculation of 3H
with an EFT potential of N = 8 and h̄ω = 22 MeV. As the
formula (H1) depends on the three parameters (E∞, k∞, a),
extrapolations start from three data points of the ground-
state energy E(L) = E(Nmax) computed in Nmax = 8, 10, 12.
Figure 21 compares E(Nmax) with the extrapolation result
E∞. From Nmax = 14 and higher, the extrapolated result is
much more accurate than the finite-volume result.

For the triton, the lowest open decay channel is t → d + n,
with a separation momentum fulfilling

h̄2k2
sep

2m
= Bt − Bd, (H3)

where Bt and Bd are the binding energies of the triton and
deuteron, respectively. Figure 22 compares the theoretical
value of ksep, computed from the theoretical energy differ-
ences, with the results k∞ from the extrapolation. Both quan-
tities become close, but not identical, as the model space is
increased. We do not completely understand the reason for the
difference between ksep and k∞. However, at LO and using NN
forces only, the triton is strongly bound, and the agreement
between k∞ and ksep is much better.

FIG. 21. Ground-state energy (black squares) of 3H computed in
a model space of Nmax + 1 shells and compared to the IR extrapo-
lated result E∞ (red circles).

We turn to 4He, where the lowest-energetic breakup chan-
nel is α → t + p. We consider the case of the NLO calcu-
lation with a potential defined in N = 8 and h̄ω = 40 MeV.
Figure 23 shows the convergence of the energy as the model
space is increased and compares it to the extrapolated result.

For this case, we can also compare the value of the
extrapolated momentum k∞ with that of the corresponding
separation momentum. The results are shown in Fig. 24. Here,
the extrapolated k∞ is somewhat smaller than the separation
momentum ksep, but the results are not yet converged as the
model space is increased.

Overall, the results of this Appendix show that the IR
extrapolations of the EFT realized as a DVR in the harmonic
oscillator basis work quite well and agree with expectations.

FIG. 22. Separation momentum (black squares) of 3H computed
in a model space of Nmax + 1 shells and compared to the IR extrapo-
lated result k∞ (red circles).
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FIG. 23. Ground-state energy (black squares) of 4He computed
in a model space of Nmax + 1 shells and compared to the IR extrapo-
lated result E∞ (red circles).

FIG. 24. Separation momentum (black squares) of 4He com-
puted in a model space of Nmax + 1 shells and compared to the IR
extrapolated result k∞ (red circles).
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