2,582 research outputs found
Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge
A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer
Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework
Glacial outburst floods (jökulhlaups) have been significant drivers of landscape change across Earth throughout the Quaternary and are a contemporary hazard in Arctic and alpine regions worldwide. Geomorphologic evidence is a foundation for reconstructing past and contemporary flood events and using additional analytical methods such as geochronology and paleohydraulics. Yet, accurate interpretation of jökulhlaup landforms and depositional sequences poses a persistent challenge due to complex controls on flood hydraulics and landscape evolution. Researchers have developed numerous strategies to reduce or resolve these challenges, but a comprehensive, globally applicable model to interpret flood evidence outside of sedimentary environments is lacking. This article synthesizes existing case studies to describe jökulhlaup geomorphologic interpretive challenges, discuss strategies to resolve them, and present a conceptual model of flood landform assemblages to illustrate hydraulic and environmental controls on resultant geomorphologic impacts. This enhanced interpretive framework aids researchers in identifying, interpreting, and testing geomorphologic evidence to reconstruct past jökulhlaups and predict future flood impacts as robustly as possible at a global, landscape-wide scale. Understanding jökulhlaup geomorphology yields insight into glacial lake and ice margin dynamics, the role of extreme events in landscape evolution, and interactions between climate, ice sheets, and hydrology. Moreover, it is increasingly important as glacial outburst floods may become more frequent due to climate-driven ice retreat, advancing predictive capacities to mitigate societal risk downstream.</div
Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model
We use continuous-time quantum Monte Carlo simulations to study retardation
effects in the metallic, quarter-filled Holstein model in one dimension. Based
on results which include the one- and two-particle spectral functions as well
as the optical conductivity, we conclude that with increasing phonon frequency
the ground state evolves from one with dominant diagonal order---2k_F charge
correlations---to one with dominant off-diagonal fluctuations, namely s-wave
pairing correlations. In the parameter range of this crossover, our numerical
results support the existence of a spin gap for all phonon frequencies. The
crossover can hence be interpreted in terms of preformed pairs corresponding to
bipolarons, which are essentially localised in the Peierls phase, and
"condense" with increasing phonon frequency to generate dominant pairing
correlations.Comment: 11 pages, 5 figure
A reliable Pade analytical continuation method based on a high accuracy symbolic computation algorithm
We critique a Pade analytic continuation method whereby a rational polynomial
function is fit to a set of input points by means of a single matrix inversion.
This procedure is accomplished to an extremely high accuracy using a novel
symbolic computation algorithm. As an example of this method in action we apply
it to the problem of determining the spectral function of a one-particle
thermal Green's function known only at a finite number of Matsubara frequencies
with two example self energies drawn from the T-matrix theory of the Hubbard
model. We present a systematic analysis of the effects of error in the input
points on the analytic continuation, and this leads us to propose a procedure
to test quantitatively the reliability of the resulting continuation, thus
eliminating the black magic label frequently attached to this procedure.Comment: 11 pages, 8 eps figs, revtex format; revised version includes
reference to anonymous ftp site containing example codes (MapleVr5.1
worksheets) displaying the implementation of the algorithm, including the
padematinv.m library packag
Site dilution of quantum spins in the honeycomb lattice
We discuss the effect of site dilution on both the magnetization and the
density of states of quantum spins in the honeycomb lattice, described by the
antiferromagnetic Heisenberg spin-S model. For this purpose a real-space
Bogoliubov-Valatin transformation is used. In this work we show that for the
S>1/2 the system can be analyzed in terms of linear spin wave theory. For spin
S=1/2, however, the linear spin wave approximation breaks down. In this case,
we have studied the effect of dilution on the staggered magnetization using the
Stochastic Series Expansion Monte Carlo method. Two main results are to be
stressed from the Monte Carlo method: (i) a better value for the staggered
magnetization of the undiluted system, m=0.2677(6); (ii) a finite value of the
staggered magnetization of the percolating cluster at the classical percolation
threshold, showing that there is no quantum critical transition driven by
dilution in the Heisenberg model. In the solution of the problem using linear
the spin wave method we pay special attention to the presence of zero energy
modes. Using a combination of linear spin wave analysis and the recursion
method we were able to obtain the thermodynamic limit behavior of the density
of states for both the square and the honeycomb lattices. We have used both the
staggered magnetization and the density of states to analyze neutron scattering
experiments and Neel temperature measurements on quasi-two- -dimensional
honeycomb systems. Our results are in quantitative agreement with experimental
results on Mn_pZn_{1-p}PS_3 and on the Ba(Ni_pMg_{1-p})_2V_2O_8.Comment: 21 pages (REVTEX), 16 figure
Conductance through Quantum Dots Studied by Finite Temperature DMRG
With the Finite temperature Density Matrix Renormalization Group method
(FT-DMRG), we depeloped a method to calculate thermo-dynamical quantities and
the conductance of a quantum dot system. Conductance is written by the local
density of states on the dot. The density of states is calculated with the
numerical analytic continuation from the thermal Green's function which is
obtained directly from the FT-DMRG. Typical Kondo behaviors in the quantum dot
system are observed conveniently by comparing the conductance with the magnetic
and charge susceptibilities: Coulomb oscillation peaks and the unitarity limit.
We discuss advantage of this method compared with others.Comment: 14 pages, 13 fiure
Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios
Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks
Accurate Results from Perturbation Theory for Strongly Frustrated Heisenberg Spin Clusters
We investigate the use of perturbation theory in finite sized frustrated spin
systems by calculating the effect of quantum fluctuations on coherent states
derived from the classical ground state. We first calculate the ground and
first excited state wavefunctions as a function of applied field for a 12-site
system and compare with the results of exact diagonalization. We then apply the
technique to a 20-site system with the same three fold site coordination as the
12-site system. Frustration results in asymptotically convergent series for
both systems which are summed with Pad\'e approximants.
We find that at zero magnetic field the different connectivity of the two
systems leads to a triplet first excited state in the 12-site system and a
singlet first excited state in the 20-site system, while the ground state is a
singlet for both. We also show how the analytic structure of the Pad\'e
approximants at evolves in the complex plane at
the values of the applied field where the ground state switches between spin
sectors and how this is connected with the non-trivial dependence of the
number on the strength of quantum fluctuations. We discuss the origin
of this difference in the energy spectra and in the analytic structures. We
also characterize the ground and first excited states according to the values
of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review
Resonance transition 795-nm rubidium laser using He buffer gas
Abstract not provide
Recommended from our members
Resonance transition 795-nm Rubidium laser using 3He buffer gas
We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems
- …