9,402 research outputs found

    Electron-spin beat susceptibility of excitons in semiconductor quantum wells

    Full text link
    Recent time-resolved differential transmission and Faraday rotation measurements of long-lived electron spin coherence in quantum wells displayed intriguing parametric dependencies. For their understanding we formulate a microscopic theory of the optical response of a gas of optically incoherent excitons whose constituent electrons retain spin coherence, under a weak magnetic field applied in the quantum well's plane. We define a spin beat susceptibility and evaluate it in linear order of the exciton density. Our results explain the many-body physics underlying the basic features observed in the experimental measurements

    Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions

    Full text link
    We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for open-shell nuclei using a multi-reference formalism based on a generalized Wick theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of even oxygen isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron drip lines. We obtain an excellent reproduction of experimental ground-state energies with quantified uncertainties, which is validated by results from the Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The agreement between conceptually different many-body approaches and experiment highlights the predictive power of current chiral two- and three-nucleon interactions, and establishes the MR-IM-SRG as a promising new tool for ab initio calculations of medium-mass nuclei far from shell closures.Comment: 5 pages, 4 figures, v2 corresponding to published versio

    Pion-less effective field theory for atomic nuclei and lattice nuclei

    Get PDF
    We compute the medium-mass nuclei 16^{16}O and 40^{40}Ca using pionless effective field theory (EFT) at next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to experimantal data for nuclei with mass numbers A=2A=2 and 33, or alternatively to results from lattice quantum chromodynamics (QCD) at an unphysical pion mass of 806 MeV. The EFT is implemented through a discrete variable representation in the harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space and facilitates the computation of medium-mass nuclei. At NLO the nuclei 16^{16}O and 40^{40}Ca are bound with respect to decay into alpha particles. Binding energies per nucleon are 9-10 MeV and 30-40 MeV at pion masses of 140 MeV and 806 MeV, respectively.Comment: 26 page

    Accelerated Sampling of Boltzmann distributions

    Full text link
    The sampling of Boltzmann distributions by stochastic Markov processes, can be strongly limited by the crossing time of high (free) energy barriers. As a result, the system may stay trapped in metastable states, and the relaxation time to the equilibrium Boltzmann distribution may be very large compared to the available computational time. In this paper, we show how, by a simple modification of the Hamiltonian, one can dramatically decrease the relaxation time of the system, while retaining the same equilibrium distribution. The method is illustrated on the case of the one-dimensional double-well potential

    Confinement Effects in Antiferromagnets

    Full text link
    Phase equilibrium in confined Ising antiferromagnets was studied as a function of the coupling (v) and a magnetic field (h) at the surfaces, in the presence of an external field H. The ground state properties were calculated exactly for symmetric boundary conditions and nearest-neighbor interactions, and a full zero-temperature phase diagram in the plane v-h was obtained for films with symmetry-preserving surface orientations. The ground-state analysis was extended to the H-T plane using a cluster-variation free energy. The study of the finite-T properties (as a function of v and h) reveals the close interdependence between the surface and finite-size effects and, together with the ground-state phase diagram, provides an integral picture of the confinement in anisotropic antiferromagnets with surfaces that preserve the symmetry of the order parameter.Comment: 10 pages, 8 figures, Accepted in Phys. Rev.

    Pattern Formation in the Inhomogeneous Cooling State of Granular Fluids

    Get PDF
    We present results from comprehensive event-driven (ED) simulations of nonlinear pattern formation in freely-evolving granular gases. In particular, we focus on the the morphologies of density and velocity fields in the inhomogeneous cooling state (ICS). We emphasize the strong analogy between the ICS morphologies and pattern formation in phase ordering systems with a globally conserved order parameter.Comment: 11 pages, 4 figures. to appear in Europhys. Let
    • …
    corecore