74,825 research outputs found

    A decision model applied to alcohol effects on driver signal light behavior

    Get PDF
    A decision model including perceptual noise or inconsistency is developed from expected value theory to explain driver stop and go decisions at signaled intersections. The model is applied to behavior in a car simulation and instrumented vehicle. Objective and subjective changes in driver decision making were measured with changes in blood alcohol concentration (BAC). Treatment levels averaged 0.00, 0.10 and 0.14 BAC for a total of 26 male subjects. Data were taken for drivers approaching signal lights at three timing configurations. The correlation between model predictions and behavior was highly significant. In contrast to previous research, analysis indicates that increased BAC results in increased perceptual inconsistency, which is the primary cause of increased risk taking at low probability of success signal lights

    A New Waveform Consistency Test for Gravitational Wave Inspiral Searches

    Get PDF
    Searches for binary inspiral signals in data collected by interferometric gravitational wave detectors utilize matched filtering techniques. Although matched filtering is optimal in the case of stationary Gaussian noise, data from real detectors often contains "glitches" and episodes of excess noise which cause filter outputs to ring strongly. We review the standard \chi^2 statistic which is used to test whether the filter output has appropriate contributions from several different frequency bands. We then propose a new type of waveform consistency test which is based on the time history of the filter output. We apply one such test to the data from the first LIGO science run and show that it cleanly distinguishes between true inspiral waveforms and large-amplitude false signals which managed to pass the standard \chi^2 test.Comment: 10 pages, 6 figures, submitted to Classical and Quantum Gravity for the proceedings of the Eighth Gravitational Wave Data Analysis Workshop (GWDAW-8

    Competition between charge and spin order in the t−U−Vt-U-V extended Hubbard model on the triangular lattice

    Full text link
    Several new classes of compounds can be modeled in first approximation by electrons on the triangular lattice that interact through on-site repulsion UU as well as nearest-neighbor repulsion VV. This extended Hubbard model on a triangular lattice has been studied mostly in the strong coupling limit for only a few types of instabilities. Using the extended two-particle self consistent approach (ETPSC), that is valid at weak to intermediate coupling, we present an unbiased study of the density and interaction dependent crossover diagram for spin and charge density wave instabilities of the normal state at arbitrary wave vector. When UU dominates over VV and electron filling is large, instabilities are chiefly in the spin sector and are controlled mostly by Fermi surface properties. Increasing VV eventually leads to charge instabilities. In the latter case, it is mostly the wave vector dependence of the vertex that determines the wave vector of the instability rather than Fermi surface properties. At small filling, non-trivial instabilities appear only beyond the weak coupling limit. There again, charge density wave instabilities are favored over a wide range of dopings by large VV at wave vectors corresponding to (3)×(3)\sqrt(3) \times \sqrt(3) superlattice in real space. Commensurate fillings do not play a special role for this instability. Increasing UU leads to competition with ferromagnetism. At negative values of UU or VV, neglecting superconducting fluctuations, one finds that charge instabilities are favored. In general, the crossover diagram presents a rich variety of instabilities. We also show that thermal charge-density wave fluctuations in the renormalized classical regime can open a pseudogap in the single-particle spectral weight, just as spin or superconducting fluctuations

    Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings

    Full text link
    We report on a current investigation of the anisotropy pattern induced by cosmic strings on the cosmic microwave background radiation (MBR). We have numerically evolved a network of cosmic strings from a redshift of Z=100Z = 100 to the present and calculated the anisotropies which they induce. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBE-DMR experiment. We have obtained a preliminary estimate of the string mass-per-unit-length μ\mu in the cosmic string scenario.Comment: 8 pages of TeX - [Color] Postscript available by anonymous ftp at ftp://fnas08.fnal.gov:/pub/Publications/Conf-94-197-A, FERMILAB-Conf-94/197-

    Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3

    Get PDF
    Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests

    Quantum Entanglement Initiated Super Raman Scattering

    Get PDF
    It has now been possible to prepare chain of ions in an entangled state and thus question arises --- how the optical properties of a chain of entangled ions differ from say a chain of independent particles. We investigate nonlinear optical processes in such chains. We explicitly demonstrate the possibility of entanglement produced super Raman scattering. Our results in contrast to Dicke's work on superradiance are applicable to stimulated processes and are thus free from the standard complications of multimode quantum electrodynamics. Our results suggest the possibility of similar enhancement factors in other nonlinear processes like four wave mixing.Comment: 4 pages, 1 figur

    Competitive comparison in music: influences upon self-efficacy beliefs by gender

    Get PDF
    This study profiles gender differences in instrumental performance self-efficacy perceptions of high school students (N = 87) over the course of a three-day orchestra festival in which students competed against one another for rank-based seating and then rehearsed and performed as a group. Reported self-beliefs rose significantly for the sample over the course of the festival. Self-efficacy beliefs of females were significantly lower than those of males before the seating audition and first rehearsal, but were no longer different by the midpoint of the festival. Survey free-response data were coded according to Bandura's (1997 Bandura, A. 1997. Self-efficacy: The Exercise of Control. New York: W. H. Freeman.) four sources of self-efficacy. A 52% drop in the frequency of student comments regarding competitive comparison appeared at the same point in which female self-efficacy beliefs were no longer different from those of males. Results support past research to suggest that males and females may respond differently to rank-based competition versus social support

    Chandra observations of the galaxy cluster Abell 1835

    Get PDF
    We present the analysis of 30 ksec of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in in the inner 30 kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the outer regions of the cluster to ~4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5. The projected mass within a radius of ~150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (~6x10^8 yr) with an integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30 kpc. We discuss the implications of our results in the light of recent RGS observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA
    • …
    corecore