75,872 research outputs found
A decision model applied to alcohol effects on driver signal light behavior
A decision model including perceptual noise or inconsistency is developed from expected value theory to explain driver stop and go decisions at signaled intersections. The model is applied to behavior in a car simulation and instrumented vehicle. Objective and subjective changes in driver decision making were measured with changes in blood alcohol concentration (BAC). Treatment levels averaged 0.00, 0.10 and 0.14 BAC for a total of 26 male subjects. Data were taken for drivers approaching signal lights at three timing configurations. The correlation between model predictions and behavior was highly significant. In contrast to previous research, analysis indicates that increased BAC results in increased perceptual inconsistency, which is the primary cause of increased risk taking at low probability of success signal lights
A New Waveform Consistency Test for Gravitational Wave Inspiral Searches
Searches for binary inspiral signals in data collected by interferometric
gravitational wave detectors utilize matched filtering techniques. Although
matched filtering is optimal in the case of stationary Gaussian noise, data
from real detectors often contains "glitches" and episodes of excess noise
which cause filter outputs to ring strongly. We review the standard \chi^2
statistic which is used to test whether the filter output has appropriate
contributions from several different frequency bands. We then propose a new
type of waveform consistency test which is based on the time history of the
filter output. We apply one such test to the data from the first LIGO science
run and show that it cleanly distinguishes between true inspiral waveforms and
large-amplitude false signals which managed to pass the standard \chi^2 test.Comment: 10 pages, 6 figures, submitted to Classical and Quantum Gravity for
the proceedings of the Eighth Gravitational Wave Data Analysis Workshop
(GWDAW-8
Competition between charge and spin order in the extended Hubbard model on the triangular lattice
Several new classes of compounds can be modeled in first approximation by
electrons on the triangular lattice that interact through on-site repulsion
as well as nearest-neighbor repulsion . This extended Hubbard model on a
triangular lattice has been studied mostly in the strong coupling limit for
only a few types of instabilities. Using the extended two-particle self
consistent approach (ETPSC), that is valid at weak to intermediate coupling, we
present an unbiased study of the density and interaction dependent crossover
diagram for spin and charge density wave instabilities of the normal state at
arbitrary wave vector. When dominates over and electron filling is
large, instabilities are chiefly in the spin sector and are controlled mostly
by Fermi surface properties. Increasing eventually leads to charge
instabilities. In the latter case, it is mostly the wave vector dependence of
the vertex that determines the wave vector of the instability rather than Fermi
surface properties. At small filling, non-trivial instabilities appear only
beyond the weak coupling limit. There again, charge density wave instabilities
are favored over a wide range of dopings by large at wave vectors
corresponding to superlattice in real space.
Commensurate fillings do not play a special role for this instability.
Increasing leads to competition with ferromagnetism. At negative values of
or , neglecting superconducting fluctuations, one finds that charge
instabilities are favored. In general, the crossover diagram presents a rich
variety of instabilities. We also show that thermal charge-density wave
fluctuations in the renormalized classical regime can open a pseudogap in the
single-particle spectral weight, just as spin or superconducting fluctuations
Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings
We report on a current investigation of the anisotropy pattern induced by
cosmic strings on the cosmic microwave background radiation (MBR). We have
numerically evolved a network of cosmic strings from a redshift of to
the present and calculated the anisotropies which they induce. Based on a
limited number of realizations, we have compared the results of our simulations
with the observations of the COBE-DMR experiment. We have obtained a
preliminary estimate of the string mass-per-unit-length in the cosmic
string scenario.Comment: 8 pages of TeX - [Color] Postscript available by anonymous ftp at
ftp://fnas08.fnal.gov:/pub/Publications/Conf-94-197-A, FERMILAB-Conf-94/197-
Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3
Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests
Quantum Entanglement Initiated Super Raman Scattering
It has now been possible to prepare chain of ions in an entangled state and
thus question arises --- how the optical properties of a chain of entangled
ions differ from say a chain of independent particles. We investigate nonlinear
optical processes in such chains. We explicitly demonstrate the possibility of
entanglement produced super Raman scattering. Our results in contrast to
Dicke's work on superradiance are applicable to stimulated processes and are
thus free from the standard complications of multimode quantum electrodynamics.
Our results suggest the possibility of similar enhancement factors in other
nonlinear processes like four wave mixing.Comment: 4 pages, 1 figur
Competitive comparison in music: influences upon self-efficacy beliefs by gender
This study profiles gender differences in instrumental performance self-efficacy perceptions of high school students (N = 87) over the course of a three-day orchestra festival in which students competed against one another for rank-based seating and then rehearsed and performed as a group. Reported self-beliefs rose significantly for the sample over the course of the festival. Self-efficacy beliefs of females were significantly lower than those of males before the seating audition and first rehearsal, but were no longer different by the midpoint of the festival. Survey free-response data were coded according to Bandura's (1997 Bandura, A. 1997. Self-efficacy: The Exercise of Control. New York: W. H. Freeman.) four sources of self-efficacy. A 52% drop in the frequency of student comments regarding competitive comparison appeared at the same point in which female self-efficacy beliefs were no longer different from those of males. Results support past research to suggest that males and females may respond differently to rank-based competition versus social support
Chandra observations of the galaxy cluster Abell 1835
We present the analysis of 30 ksec of Chandra observations of the galaxy
cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology,
although we detect substructure in in the inner 30 kpc radius. Spectral
analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the
outer regions of the cluster to ~4 keV in the core. The Chandra data provide
tight constraints on the gravitational potential of the cluster which can be
parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us
to measure the X-ray gas mass fraction as a function of radius, leading to a
determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5.
The projected mass within a radius of ~150 kpc implied by the presence of
gravitationally lensed arcs in the cluster is in good agreement with the mass
models preferred by the Chandra data. We find a radiative cooling time of the
X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model
fits to the Chandra spectrum and a deprojection analysis of the Chandra image
both indicate the presence of a young cooling flow (~6x10^8 yr) with an
integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30
kpc. We discuss the implications of our results in the light of recent RGS
observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA
- …