82 research outputs found

    The One-dimensional KPZ Equation and the Airy Process

    Full text link
    Our previous work on the one-dimensional KPZ equation with sharp wedge initial data is extended to the case of the joint height statistics at n spatial points for some common fixed time. Assuming a particular factorization, we compute an n-point generating function and write it in terms of a Fredholm determinant. For long times the generating function converges to a limit, which is established to be equivalent to the standard expression of the n-point distribution of the Airy process.Comment: 15 page

    Remarks on the multi-species exclusion process with reflective boundaries

    Full text link
    We investigate one of the simplest multi-species generalizations of the one dimensional exclusion process with reflective boundaries. The Markov matrix governing the dynamics of the system splits into blocks (sectors) specified by the number of particles of each kind. We find matrices connecting the blocks in a matrix product form. The procedure (generalized matrix ansatz) to verify that a matrix intertwines blocks of the Markov matrix was introduced in the periodic boundary condition, which starts with a local relation [Arita et al, J. Phys. A 44, 335004 (2011)]. The solution to this relation for the reflective boundary condition is much simpler than that for the periodic boundary condition

    Some Exact Results for the Exclusion Process

    Full text link
    The asymmetric simple exclusion process (ASEP) is a paradigm for non-equilibrium physics that appears as a building block to model various low-dimensional transport phenomena, ranging from intracellular traffic to quantum dots. We review some recent results obtained for the system on a periodic ring by using the Bethe Ansatz. We show that this method allows to derive analytically many properties of the dynamics of the model such as the spectral gap and the generating function of the current. We also discuss the solution of a generalized exclusion process with NN-species of particles and explain how a geometric construction inspired from queuing theory sheds light on the Matrix Product Representation technique that has been very fruitful to derive exact results for the ASEP.Comment: 21 pages; Proceedings of STATPHYS24 (Cairns, Australia, July 2010

    Fluctuations and skewness of the current in the partially asymmetric exclusion process

    Full text link
    We use functional Bethe Ansatz equations to calculate the cumulants of the total current in the partially asymmetric exclusion process. We recover known formulas for the first two cumulants (mean value of the current and diffusion constant) and obtain an explicit finite size formula for the third cumulant. The expression for the third cumulant takes a simple integral form in the limit where the asymmetry scales as the inverse of the square root of the size of the system, which corresponds to a natural separation between weak and strong asymmetry.Comment: 21 pages, 3 figure

    Fluctuations of the heat flux of a one-dimensional hard particle gas

    Full text link
    Momentum-conserving one-dimensional models are known to exhibit anomalous Fourier's law, with a thermal conductivity varying as a power law of the system size. Here we measure, by numerical simulations, several cumulants of the heat flux of a one-dimensional hard particle gas. We find that the cumulants, like the conductivity, vary as power laws of the system size. Our results also indicate that cumulants higher than the second follow different power laws when one compares the ring geometry at equilibrium and the linear case in contact with two heat baths (at equal or unequal temperatures). keywords: current fluctuations, anomalous Fourier law, hard particle gasComment: 5 figure

    Matrix product solution to an inhomogeneous multi-species TASEP

    Full text link
    We study a multi-species exclusion process with inhomogeneous hopping rates. This model is equivalent to a Markov chain on the symmetric group that corresponds to a random walk in the affine braid arrangement. We find a matrix product representation for the stationary state of this model. We also show that it is equivalent to a graphical construction proposed by Ayyer and Linusson, which generalizes Ferrari and Martin's construction

    Spectrum in multi-species asymmetric simple exclusion process on a ring

    Full text link
    The spectrum of Hamiltonian (Markov matrix) of a multi-species asymmetric simple exclusion process on a ring is studied. The dynamical exponent concerning the relaxation time is found to coincide with the one-species case. It implies that the system belongs to the Kardar-Parisi-Zhang or Edwards-Wilkinson universality classes depending on whether the hopping rate is asymmetric or symmetric, respectively. Our derivation exploits a poset structure of the particle sectors, leading to a new spectral duality and inclusion relations. The Bethe ansatz integrability is also demonstrated.Comment: 46 pages, 9 figure

    Transfer matrices for the totally asymmetric exclusion process

    Full text link
    We consider the totally asymmetric simple exclusion process (TASEP) on a finite lattice with open boundaries. We show, using the recursive structure of the Markov matrix that encodes the dynamics, that there exist two transfer matrices TL−1,LT_{L-1,L} and T~L−1,L\tilde{T}_{L-1,L} that intertwine the Markov matrices of consecutive system sizes: T~L−1,LML−1=MLTL−1,L\tilde{T}_{L-1,L}M_{L-1}=M_{L}T_{L-1,L}. This semi-conjugation property of the dynamics provides an algebraic counterpart for the matrix-product representation of the steady state of the process.Comment: 7 page

    Free-energy distribution of the directed polymer at high temperature

    Full text link
    We study the directed polymer of length tt in a random potential with fixed endpoints in dimension 1+1 in the continuum and on the square lattice, by analytical and numerical methods. The universal regime of high temperature TT is described, upon scaling 'time' t∌T5/Îșt \sim T^5/\kappa and space x=T3/Îșx = T^3/\kappa (with Îș=T\kappa=T for the discrete model) by a continuum model with ÎŽ\delta-function disorder correlation. Using the Bethe Ansatz solution for the attractive boson problem, we obtain all positive integer moments of the partition function. The lowest cumulants of the free energy are predicted at small time and found in agreement with numerics. We then obtain the exact expression at any time for the generating function of the free energy distribution, in terms of a Fredholm determinant. At large time we find that it crosses over to the Tracy Widom distribution (TW) which describes the fixed TT infinite tt limit. The exact free energy distribution is obtained for any time and compared with very recent results on growth and exclusion models.Comment: 6 pages, 3 figures large time limit corrected and convergence to Tracy Widom established, 1 figure changed

    Crossover to the KPZ equation

    Get PDF
    We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry an2−γan^{2-\gamma} (a,γ>0a,\gamma>0) and it occurs at γ=1/2\gamma=1/2. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if γ∈(1/2,1]\gamma\in(1/2,1], while for γ=1/2\gamma=1/2 it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.Comment: Published by Annales Henri Poincare Volume 13, Number 4 (2012), 813-82
    • 

    corecore