104 research outputs found

    Laser-controlled local magnetic field with semiconductor quantum rings

    Get PDF
    We analize theoretically the dynamics of N electrons localized in a semiconductor quantum ring under a train of phase-locked infrared laser pulses. The pulse sequence is designed to control the total angular momentum of the electrons. The quantum ring can be put in states characterized by strong currents. The local magnetic field created by these currents can be used for a selective quantum control of single spins in semiconductor systems

    Persistent and radiation-induced currents in distorted quantum rings

    Get PDF
    Persistent and radiation-induced currents in distorted narrow quantum rings are theoretically investigated. We show that ring distorsions can be described using a geometrical potential term. We analyse the effect of this term on the current induced by a magnetic flux (persistent current) and by a polarized coherent electromagnetic field (radiation-induced current). The strongest effects in persistent currents are observed for distorted rings with a small number of electrons. The distortion smoothes the current oscillations as a function of the magnetic flux and changes the temperature dependence of the current amplitude. For radiation-induced currents, the distortion induces an ac component in the current and affects its dependence on the radiation frequency and intensity

    Universal quantum gates based on both geometric and dynamic phases in quantum dots

    Full text link
    A large-scalable quantum computer model, whose qubits are represented by the subspace subtended by the ground state and the single exciton state on semiconductor quantum dots, is proposed. A universal set of quantum gates in this system may be achieved by a mixed approach, composed of dynamic evolution and nonadibatic geometric phase.Comment: 4 pages, to appear in Chin. Phys. Let

    Role of bound pairs in the optical properties of highly excited semiconductors: a self consistent ladder approximation approach

    Full text link
    Presence of bound pairs (excitons) in a low-temperature electron-hole plasma is accounted for by including correlation between fermions at the ladder level. Using a simplified one-dimensional model with on-site Coulomb interaction, we calculate the one-particle self-energies, chemical potential, and optical response. The results are compared to those obtained in the Born approximation, which does not account for bound pairs. In the self-consistent ladder approximation the self-energy and spectral function show a characteristic correlation peak at the exciton energy for low temperature and density. In this regime the Born approximation overestimates the chemical potential. Provided the appropriate vertex correction in the interaction with the photon is included, both ladder and Born approximations reproduce the excitonic and free pair optical absorption at low density, and the disappearance of the exciton absorption peak at larger density. However, lineshapes and energy shifts with density of the absorption and photoluminescence peaks are drastically different. In particular, the photoluminescence emission peak is much more stable in the ladder approximation. At low temperature and density a sizeable optical gain is produced in both approximations just below the excitonic peak, however this gain shows unphysical features in the Born approximation. We conclude that at low density and temperature it is fundamental to take into account the existence of bound pairs in the electron-hole plasma for the calculation of its optical and thermodynamic properties. Other approximations that fail to do so are intrinsically unphysical in this regime, and for example are not suitable to address the problem of excitonic lasing.Comment: 14 pages, 12 figure

    Electron-hole correlation effects in the emission of light from quantum wires

    Full text link
    We present a self-consistent treatment of the electron-hole correlations in optically excited quantum wires within the ladder approximation, and using a contact potential interaction. The limitations of the ladder approximation to the excitonic low-density region are largely overcome by the introduction of higher order correlations through self consistency. We show relevance of these correlations in the low-temperature emission, even for high density relevant in lasing, when large gain replaces excitonic absorption.Comment: 4 paes 3 figure

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot

    Full text link
    We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The results show the feasibility of single qubit quantum logic in a semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the dephasing in the quantum dots. The introduction has been reworded for clarity. Minor readability fixe

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Theory of Fast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots

    Full text link
    Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor quantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time of elementary quantum operations on excitons and biexcitons by an order of magnitude or more. Analytic and numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge its quality. A modified Quantum Fourier Transform algorithm is constructed with only Rabi rotations and is shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a numerical simulation.Comment: 11 pages,5 figure
    • …
    corecore