1,824 research outputs found

    Commentary: Glucose control: Not just a bystander in GLP-1RA-mediated cardiovascular protection

    Get PDF
    Cardiovascular (CV) disease prevention in type 2 diabetes (T2D)demands multifactorial interventions including treatment of dyslipidemia, hypertension, hypercoagulability, and certainly hyperglycemia[1]. However, randomized controlled trials specifically addressing the impact of intensive glucose control (IGC) on CV outcomes yielded ambiguous results [2], while real-life evidence from a Swedish nationwide registry showed hyperglycemia as the strongest predictor of myocardial infarction (MI) and stroke [3]. Although CV outcome trials (CVOT) with GLP-1 receptor agonists (GLP-1RA) were designed to achieve glycemic equipoise, all showed a greater HbA1c reduction in the intervention arm [4–10], allowing to consider the potential effect of different degrees of glucose-lowering on their resul

    Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects

    Get PDF
    The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses

    Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: A meta-analysis

    Get PDF
    GLP-1 receptor agonists (GLP-1RA) and SGLT2 inhibitors (SGLT2i) have been associated with improved glycemic control, body weight loss and favorable changes in cardiovascular risk factors and outcomes. We conducted a systematic review and meta-analysis to evaluate the effects of the addition of GLP-1RA to SGLT2i in patients with type 2 diabetes mellitus and inadequate glycemic control. Six databases were searched until March 2019. Randomized controlled trials (RCT) with a follow-up of at least 24 weeks reporting on HbA1c, body weight, systolic blood pressure, lipids, achievement of HbA1c < 7%, requirement of rescue therapy due to hyperglycemia and hypoglycemic events were selected. Four RCTs were included. Compared to SGLT2i, the GLP-1RA/SGLT2i combination was associated with greater reduction in HbA1c (−0.74%), body weight (−1.61 kg), and systolic blood pressure (−3.32 mmHg). A higher number of patients achieved HbA1c < 7% (RR = 2.15), with a lower requirement of rescue therapy (RR = 0.37) and similar incidence of hypoglycemia. Reductions in total and LDL cholesterol were found. The present review supports treatment intensification with GLP-1RA in uncontrolled type 2 diabetes on SGLT2i. This drug regimen could provide improved HbA1c control, together with enhanced weight loss and blood pressure and lipids control

    Cardiovascular and Renal Effectiveness of GLP-1 Receptor Agonists vs. Other Glucose-Lowering Drugs in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Real-World Studies

    Get PDF
    Cardiovascular outcome trials (CVOT) showed that treatment with glucagon-like peptide-1 receptor agonists (GLP-1RA) is associated with significant cardiovascular benefits. However, CVOT are scarcely representative of everyday clinical practice, and real-world studies could provide clini-cians with more relatable evidence. Here, literature was thoroughly searched to retrieve real-world studies investigating the cardiovascular and renal outcomes of GLP-1RA vs. other glucose-lowering drugs and carry out relevant meta-analyses thereof. Most real-world studies were conducted in populations at low cardiovascular and renal risk. Of note, real-world studies investigating cardio-renal outcomes of GLP-1RA suggested that initiation of GLP-1RA was associated with a greater benefit on composite cardiovascular outcomes, MACE (major adverse cardiovascular events), all-cause mortality, myocardial infarction, stroke, cardiovascular death, peripheral artery disease, and heart failure compared to other glucose-lowering drugs with the exception of sodium-glucose transporter-2 inhibitors (SGLT-2i). Initiation of SGLT-2i and GLP-1RA yielded similar effects on composite cardiovascular outcomes, MACE, stroke, and myocardial infarction. Conversely, GLP-1RA were less effective on heart failure prevention compared to SGLT-2i. Finally, the few real-world studies addressing renal outcomes suggested a significant benefit of GLP-1RA on estimated glomerular filtration rate (eGFR) reduction and hard renal outcomes vs. active comparators except SGLT-2i. Further real-world evidence is needed to clarify the role of GLP-1RA in cardio-renal protection among available glucose-lowering drugs

    Irisin and incretin hormones: Similarities, differences, and implications in type 2 diabetes and obesity

    Get PDF
    Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α-and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis–involving the gut, muscle, and endocrine pancreas that controls energy homeostasis

    Diabetes in the Time of COVID-19: A Twitter-Based Sentiment Analysis

    Get PDF
    Since December 31, 2019 and as of May 31, 2020, 6 028 135 cases of coronavirus disease 2019 (COVID-19) have been reported, including 368 944 deaths.1 A Chinese longitudinal study showed that the COVID-19 outbreak had a significant psychological impact on the general population, with symptoms comparable to those of post-traumatic stress disease.2 Diabetes represents a fully-fledged risk factor for poorer prognosis of COVID-19

    Efficacy and safety of flash glucose monitoring in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Flash glucose monitoring (FGM) is a factory-calibrated sensor-based technology for the measurement of interstitial glucose. We performed a systematic review and meta-analysis to assess its efficacy and safety in patients with type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS: PubMed, CENTRAL, Scopus and Web of Science were searched in July 2019. Twelve studies with a follow-up longer than 8 weeks, evaluating 2173 patients on prandial insulin, multiple daily insulin injections or continuous subcutaneous insulin infusion were included. The following data were extracted: HbA1c, time in range, time above 180 mg/dL, time below 70 mg/dL, frequency of hypoglycemic events, number of self-monitoring of blood glucose (SMBG) measurements, total daily insulin dose, patient-reported outcomes, adverse events, and discontinuation rate. A comparison with SMBG was conducted. RESULTS: FGM use was associated with a reduction in HbA1c (-0.26% (-3 mmol/mol); p=0.002) from baseline to the last available follow-up, which correlated with HbA1c levels at baseline (-0.4% (-4 mmol/mol) for each 1.0% (11 mmol/mol) of HbA1c above 7.2% (55 mmol/mol)). Also, a decrease in time below 70 mg/dL was found (-0.60 hours/day; p=0.04). Favorable findings in patient-reported outcomes and no device-related serious adverse events were reported. When compared with SMBG, FGM was characterized by no statistically different change in HbA1c (p=0.09), with lower number of SMBG measurements per day (-3.76 n/day; p<0.001) and risk of discontinuation (relative risk=0.42; p=0.001). A limited number of studies, with a heterogeneous design and usually with a short-term follow-up and without specific training, were found. CONCLUSIONS: The present review provides evidence for the use of FGM as an effective strategy for the management of diabetes

    The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor

    Get PDF
    Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases

    Reduction of hypoglycaemia, lifestyle modifications and psychological distress during lockdown following SARS-CoV-2 outbreak in type 1 diabetes

    Get PDF
    Aims: To assess changes in glucose metrics and their association with psychological distress and lifestyle changes in patients with type 1 diabetes (T1D) using flash glucose monitoring (FGM) during lockdown following severe acute respiratory syndrome coronavirus 2 outbreak. Materials and methods: Single-centre, observational, retrospective study enrolling T1D patients who attended a remote visit on April 2020 at the Endocrinology division of the University Hospital Policlinico Consorziale, Bari, Italy. Lockdown-related changes in physical activity level and dietary habits were assessed on a semi-quantitative basis. Changes in general well-being were assessed by the General Health Questionnaire-12 items with a binary scoring system. Glucose metrics were obtained from the Libreview platform for the first 2 weeks of February 2020 (T0) and the last 2 weeks before the phone visit (T1). Results: Out of 84 patients assessed for eligibility, 48 had sufficient FGM data to be included in the analysis. FGM data analysis revealed significant reductions in coefficient of variation, number of hypoglycaemic events, and time below range, while no changes were found in time in range, time above range, mean sensor glucose, and glucose management indicator. Moreover, the frequency of sweets consumption was inversely related to the occurrence of hypoglycaemic events during lockdown. Conclusions: Lockdown-related lifestyle changes, albeit unhealthy, may lead to reduction in FGM-derived measures of hypoglycaemia and glycaemic variability in patients with T1D
    • …
    corecore