11,525 research outputs found

    Stark shift and field induced tunneling in doped quantum wells with arbitrary potential profiles

    Get PDF
    The energies and resonance widths of single doped quantum wells consisting of AlGaAs/GaAs with rectangular and annealing induced diffusion modified shapes are calculated under an uniform electric field using the stabilization method. The electronic structure is calculated without an electric field in the finite temperature density functional theory with exchange-correlation potential treated in the local density approximation. Our scheme for solving the Schrodinger and Poisson equations is based on the Fourier series method. The electric field is added to the self-consistent potential and energies are obtained as a function of the combined width of the well and barriers. This yields us the stabilization graph from which the energies and resonance widths at different field strengths are extracted using the Fermi Golden rule.published_or_final_versio

    Effect of spin orbit coupling and Hubbard UU on the electronic structure of IrO2_2

    Full text link
    We have studied in detail the electronic structure of IrO2_2 including spin-orbit coupling (SOC) and electron-electron interaction, both within the GGA+U and GGA+DMFT approximations. Our calculations reveal that the Ir t2g_{2g} states at the Fermi level largely retain the Jeff_{\rm eff} = 12\frac{1}{2} character, suggesting that this complex spin-orbit entangled state may be robust even in metallic IrO2_2. We have calculated the phase diagram for the ground state of IrO2_2 as a function of UU and find a metal insulator transition that coincides with a magnetic phase change, where the effect of SOC is only to reduce the critical values of UU necessary for the transition. We also find that dynamic correlations, as given by the GGA+DMFT calculations, tend to suppress the spin-splitting, yielding a Pauli paramagnetic metal for moderate values of the Hubbard UU. Our calculated optical spectra and photoemission spectra including SOC are in good agreement with experiment demonstrating the importance of SOC in IrO2_2

    Short range correlations in relativistic nuclear matter models

    Full text link
    Short range correlations are introduced using unitary correlation method in a relativistic approach to the equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. It is shown that the correlations give rise to an extra node in the ground-state wave-function in the nucleons, contrary to what happens in non-relativistic calculations with a hard core. The effect of the correlations in the ground state properties of the nuclear matter and neutron matter is studied. The nucleon effective mass and equation of state (EOS) are very sensitive to short range correlations. In particular, if the pion contact term is neglected a softening of the EOS is predicted. Correlations have also an important effect on the neutron matter EOS which presents no binding but only a very shallow minimum contrary to the Walecka model.Comment: 8pages, 4 figure

    NiS - An unusual self-doped, nearly compensated antiferromagnetic metal

    Get PDF
    NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate these physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures
    corecore