11,525 research outputs found
Stark shift and field induced tunneling in doped quantum wells with arbitrary potential profiles
The energies and resonance widths of single doped quantum wells consisting of AlGaAs/GaAs with rectangular and annealing induced diffusion modified shapes are calculated under an uniform electric field using the stabilization method. The electronic structure is calculated without an electric field in the finite temperature density functional theory with exchange-correlation potential treated in the local density approximation. Our scheme for solving the Schrodinger and Poisson equations is based on the Fourier series method. The electric field is added to the self-consistent potential and energies are obtained as a function of the combined width of the well and barriers. This yields us the stabilization graph from which the energies and resonance widths at different field strengths are extracted using the Fermi Golden rule.published_or_final_versio
Effect of spin orbit coupling and Hubbard on the electronic structure of IrO
We have studied in detail the electronic structure of IrO including
spin-orbit coupling (SOC) and electron-electron interaction, both within the
GGA+U and GGA+DMFT approximations. Our calculations reveal that the Ir t
states at the Fermi level largely retain the J =
character, suggesting that this complex spin-orbit entangled state may be
robust even in metallic IrO. We have calculated the phase diagram for the
ground state of IrO as a function of and find a metal insulator
transition that coincides with a magnetic phase change, where the effect of SOC
is only to reduce the critical values of necessary for the transition. We
also find that dynamic correlations, as given by the GGA+DMFT calculations,
tend to suppress the spin-splitting, yielding a Pauli paramagnetic metal for
moderate values of the Hubbard . Our calculated optical spectra and
photoemission spectra including SOC are in good agreement with experiment
demonstrating the importance of SOC in IrO
Short range correlations in relativistic nuclear matter models
Short range correlations are introduced using unitary correlation method in a
relativistic approach to the equation of state of the infinite nuclear matter
in the framework of the Hartree-Fock approximation. It is shown that the
correlations give rise to an extra node in the ground-state wave-function in
the nucleons, contrary to what happens in non-relativistic calculations with a
hard core. The effect of the correlations in the ground state properties of the
nuclear matter and neutron matter is studied. The nucleon effective mass and
equation of state (EOS) are very sensitive to short range correlations. In
particular, if the pion contact term is neglected a softening of the EOS is
predicted. Correlations have also an important effect on the neutron matter EOS
which presents no binding but only a very shallow minimum contrary to the
Walecka model.Comment: 8pages, 4 figure
NiS - An unusual self-doped, nearly compensated antiferromagnetic metal
NiS, exhibiting a text-book example of a first-order transition with many
unusual properties at low temperatures, has been variously described in terms
of conflicting descriptions of its ground state during the past several
decades. We calculate these physical properties within first-principle
approaches based on the density functional theory and conclusively establish
that all experimental data can be understood in terms of a rather unusual
ground state of NiS that is best described as a self-doped, nearly compensated,
antiferromagnetic metal, resolving the age-old controversy. We trace the origin
of this novel ground state to the specific details of the crystal structure,
band dispersions and a sizable Coulomb interaction strength that is still
sub-critical to drive the system in to an insulating state. We also show how
the specific antiferromagnetic structure is a consequence of the less-discussed
90 degree and less than 90 degree superexchange interactions built in to such
crystal structures
- …
