78 research outputs found

    Absence of confinement in (SrTiO3)/(SrTi0:8Nb0:2O3) superlattices

    Full text link
    The reduction of dimensionality is an efficient pathway to boost the performances of thermoelectric materials, it leads to the quantum confinement of the carriers and thus to large Seebeck coefficients (S) and it also suppresses the thermal conductivity by increasing the phonon scattering processes. However, quantum confinement in superlattices is not always easy to achieve and needs to be carefully validated. In the past decade, large values of S have been measured in (SrTiO3)/(SrTi0:8Nb0:2O3) superlattices (Nat. Mater. 6, 129 (2007) and Appl. Phys. Lett. 91, 192105 (2007)). In the δ\delta-doped compound, the measured S was almost 6 times larger than that of the bulk material. This huge increase has been attributed to the two dimensional confinement of the carriers in the doped regions. In this work, we demonstrate that the experimental data can be well explained quantitatively within the scenario in which electrons are delocalized in both in-plane and growth directions, hence strongly suggesting that the confinement picture in these superlattices may be unlikely.Comment: 5 figures, manuscript submitte

    Unified modelling of the thermoelectric properties in SrTiO3

    Full text link
    Thermoelectric materials are opening a promising pathway to address energy conversion issues governed by a competition between thermal and electronic transport. Improving the efficiency is a difficult task, a challenge that requires new strategies to unearth optimized compounds. We present a theory of thermoelectric transport in electron doped SrTiO3, based on a realistic tight binding model that includes relevant scattering processes. We compare our calculations against a wide panel of experimental data, both bulk and thin films. We find a qualitative and quantitative agreement over both a wide range of temperatures and carrier concentrations, from light to heavily doped. Moreover, the results appear insensitive to the nature of the dopant La, B, Gd and Nb. Thus, the quantitative success found in the case of SrTiO3, reveals an efficient procedure to explore new routes to improve the thermoelectric properties in oxides.Comment: 5 figures, manuscript submitte

    Magnetic Resonant excitations in High-{Tc\rm T_c} superconductors

    Full text link
    The observation of an unusual spin resonant excitation in the superconducting state of various High-Tc ~copper oxides by inelastic neutron scattering measurements is reviewed. This magnetic mode % (that does not exist in conventional superconductors) is discussed in light of a few theoretical models and likely corresponds to a spin-1 collective mode.Comment: 4 figures, Proceedings conference MSM'03 (september 2003) in Monastir (Tunisia) to be published in Phys. Stat. Solid

    Absence of Ferromagnetism in Mn-doped Tetragonal Zirconia

    Full text link
    In a recent letter, it has been predicted within first principle studies that Mn-doped ZrO2 compounds could be good candidate for spintronics application because expected to exhibit ferromagnetism far beyond room temperature. Our purpose is to address this issue experimentally for Mn-doped tetragonal zirconia. We have prepared polycrystalline samples of Y0.15(Zr0.85-yMny)O2 (y=0, 0.05, 0.10, 0.15 & 0.20) by using standard solid state method at equilibrium. The obtained samples were carefully characterized by using x-ray diffraction, scanning electron microscopy, elemental color mapping, X-ray photoemission spectroscopy and magnetization measurements. From the detailed structural analyses, we have observed that the 5% Mn doped compound crystallized into two symmetries (dominating tetragonal & monoclinic), whereas higher Mn doped compounds are found to be in the tetragonal symmetry only. The spectral splitting of the Mn 3s core-level x-ray photoelectron spectra confirms that Mn ions are in the Mn3+ oxidation state and indicate a local magnetic moment of about 4.5 {\mu}B/Mn. Magnetic measurements showed that compounds up to 10% of Mn doping are paramagnetic with antiferromagnetic interactions. However, higher Mn doped compound exhibits local ferrimagnetic ordering. Thus, no ferromagnetism has been observed for all Mn-doped tetragonal ZrO2 samples.Comment: 20 pages, 4 figure

    Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85\bf YBa_2Cu_3O_{6.85}

    Full text link
    A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85\rm YBa_2Cu_3O_{6.85} provides evidence of new resonant magnetic features, in addition to the well known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2\rm CuO_2 layers; and (ii) high energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes can be understood by considering the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors. This provides new insight into the interplay between collective spin excitations and the continuum of electron-hole excitations.Comment: 5 figure

    Doping Dependence of Bilayer Resonant Spin Excitations in (Y,Ca)Ba2Cu3O6+x\bf (Y,Ca)Ba_2Cu_3O_{6+x}

    Full text link
    Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-TcT_c superconductor Y1xCaxBa2Cu3O6+y\rm Y_{1-x}Ca_{x}Ba_2Cu_3O_{6+y} over a wide doping range. The threshold of the spin excitation continuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, measured on the same samples by electronic Raman scattering in the B1gB_{1g} symmetry. Above a critical doping level of δ0.19\delta \simeq 0.19, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.Comment: 4 figure

    2D orbital-like magnetic order in La2xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}

    Full text link
    In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La2xSrxCuO4{\rm La_{2-x}Sr_xCuO_4} (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {\it\bf only} short range with an in-plane correlation length of \sim 10 \AA\ and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.Comment: 4 figures, submitted to Phys. Rev. Let

    Absence of an isotope effect in the magnetic resonance in high-TcT_c superconductors

    Full text link
    An inelastic neutron scattering experiment has been performed in the high-temperature superconductor YBa2Cu3O6.89\rm YBa_2Cu_3O_{6.89} to search for an oxygen-isotope shift of the well-known magnetic resonance mode at 41 meV. Contrary to a recent prediction (I. Eremin, {\it et al.}, Phys. Rev. B {\bf 69}, 094517 (2004)), a negligible shift (at best \leq +0.2 meV) of the resonance energy is observed upon oxygen isotope substitution (16^{16}O18\to^{18}O). This suggests a negligible spin-phonon interaction in the high-TcT_c cuprates at optimal doping.Comment: 3 figure

    Universal relation between magnetic resonance and superconducting gap in unconventional superconductors

    Full text link
    Unconventional superconductors such as the high-transition temperature cuprates, heavy-fermion systems and iron arsenide-based compounds exhibit antiferromagnetic fluctuations that are dominated by a resonance, a collective spin-one excitation mode in the superconducting state. Here we demonstrate the existence of a universal linear relation, Er2ΔEr \propto 2\Delta, between the magnetic resonance energy (Er) and the superconducting pairing gap (Δ\Delta), spanning two orders of magnitude in energy. This relation is valid for materials that range from being close to the Mott-insulating limit to being on the border of itinerant magnetism. Since the common excitonic picture of the resonance has not led to such universality, our observation suggests a much deeper connection between antiferromagnetic fluctuations and unconventional superconductivity.Comment: 19 pages, 5 figures, 2 table
    corecore