58 research outputs found

    Pathway of human AS3MT arsenic methylation

    Get PDF
    A synthetic gene encoding human As(III) S-adenosylmethionine (SAM) methyltransferase (hAS3MT) was expressed, and the purified enzyme was characterized. The synthetic enzyme is considerably more active than a cDNA-expressed enzyme using endogenous reductants thioredoxin (Trx), thioredoxin reductase (TR), NADPH, and reduced glutathione (GSH). Each of the seven cysteines (the four conserved residues, Cys32, Cys61, Cys156, and Cys206, and nonconserved, Cys72, Cys85, and Cys250) was individually changed to serine. The nonconserved cysteine derivates were still active. None of the individual C32S, C61S, C156S, and C206S derivates were able to methylate As(III). However, the C32S and C61S enzymes retained the ability to methylate MAs(III). These observations suggest that Cys156 and Cys206 play a different role in catalysis than that of Cys32 and Cys61. A homology model built on the structure of a thermophilic orthologue indicates that Cys156 and Cys206 form the As(III) binding site, whereas Cys32 and Cys61 form a disulfide bond. Two observations shed light on the pathway of methylation. First, binding assays using the fluorescence of a single-tryptophan derivative indicate that As(GS)3 binds to the enzyme much faster than inorganic As(III). Second, the major product of the first round of methylation is MAs(III), not MAs(V), and remains enzyme-bound until it is methylated a second time. We propose a new pathway for hAS3MT catalysis that reconciles the hypothesis of Challenger ((1947) Sci. Prog., 35, 396-416) with the pathway proposed by Hayakawa et al. ((2005) Arch. Toxicol., 79, 183-191). The products are the more toxic and more carcinogenic trivalent methylarsenicals, but arsenic undergoes oxidation and reduction as enzyme-bound intermediates

    Pathway of Human AS3MT ArsenicMethylation

    Get PDF
    A synthetic gene encoding human As(III) S-adenosylmethionine (SAM) methyltransferase (hAS3MT) was expressed, and the purified enzyme was characterized. The synthetic enzyme is considerably more active than a cDNA-expressed enzyme using endogenous reductants thioredoxin (Trx), thioredoxin reductase (TR), NADPH, and reduced glutathione (GSH). Each of the seven cysteines (the four conserved residues, Cys32, Cys61, Cys156, and Cys206, and nonconserved, Cys72, Cys85, and Cys250) was individually changed to serine. The nonconserved cysteine derivates were still active. None of the individual C32S, C61S, C156S, and C206S derivates were able to methylate As(III). However, the C32S and C61S enzymes retained the ability to methylate MAs(III). These observations suggest that Cys156 and Cys206 play a different role in catalysis than that of Cys32 and Cys61. A homology model built on the structure of a thermophilic orthologue indicates that Cys156 and Cys206 form the As(III) binding site, whereas Cys32 and Cys61 form a disulfide bond. Two observations shed light on the pathway of methylation. First, binding assays using the fluorescence of a single-tryptophan derivative indicate that As(GS)3 binds to the enzyme much faster than inorganic As(III). Second, the major product of the first round of methylation is MAs(III), not MAs(V), and remains enzyme-bound until it is methylated a second time. We propose a new pathway for hAS3MT catalysis that reconciles the hypothesis of Challenger ((1947) Sci. Prog., 35, 396?416) with the pathway proposed by Hayakawa et al. ((2005) Arch. Toxicol., 79, 183?191). The products are the more toxic and more carcinogenic trivalent methylarsenicals, but arsenic undergoes oxidation and reduction as enzyme-bound intermediates

    Lack of Cetuximab induced skin toxicity in a previously irradiated field: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mutation, amplification or dysregulation of the EGFR family leads to uncontrolled division and predisposes to cancer. Inhibiting the EGFR represents a form of targeted cancer therapy.</p> <p>Case report</p> <p>We report the case of 79 year old gentlemen with a history of skin cancer involving the left ear who had radiation and surgical excision. He had presented with recurrent lymph node in the left upper neck. We treated him with radiation therapy concurrently with Cetuximab. He developed a skin rash over the face and neck area two weeks after starting Cetuximab, which however spared the previously irradiated area.</p> <p>Conclusion</p> <p>The etiology underlying the sparing of the previously irradiated skin maybe due to either decrease in the population of EGFR expressing cells or decrease in the EGFR expression.</p> <p>We raised the question that "Is it justifiable to use EGFR inhibitors for patients having recurrence in the previously irradiated field?" We may need further research to answer this question which may guide the physicians in choosing appropriate drug in this scenario.</p

    Do African-American men need separate prostate cancer screening guidelines?

    Full text link
    BACKGROUND: In 2012, the United States Preventative Services Task Force issued new guidelines recommending that male U.S. residents, irrespective of race, no longer be screened for prostate cancer. In African American men, the incidence of prostate cancer is almost 60 % higher and the mortality rate is two to three times greater than in Caucasians. The purpose of this study is to reduce African American men's prostate cancer burden by demonstrating they need separate screening guidelines. METHODS: We performed a PubMed search using the keywords: African American, Prostate cancer, Outcomes, Molecular markers, Prostate-specific Antigen velocity, PSA density, and to derive data relevant to our hypothesis. RESULTS: In our literature review, we identified several aspects of prostate cancer that are different in Caucasian and African American men. These included prostate cancer incidence and outcome, the clinical course of the disease, serum PSA levels, genetic differences, and social barriers. It's also important to note that the USPSTF guidelines were based on two studies, one of which reported that only 4 % of its participants were African American. The other did not report demographic information, but used participants from seven European countries with small African American populations. CONCLUSION: Given the above, we conclude that separate prostate cancer screening guidelines are greatly necessary to help save the lives of African Americans

    Bio-relevant complexes of novel N2O2 type heterocyclic ligand: Synthesis, structural elucidation, biological evaluation and docking studies

    No full text
    Organic and inorganic entities [Cu(II), Co(II), Ni(II) and Zn(II)] have been bridged by N2O2 type heterocyclic imine (-C=N) ligand for the synthesis of novel organic-inorganic bridged complexes of the type [M(H2L)]. The synthesized complexes were characterized by spectral techniques such as FT-IR, UV-visible, H-1 NMR, C-13 NMR, EPR, ESI-Mass, elemental analysis, magnetic susceptibility and molar conductivity measurements. The metal complexes adopt square planar geometrical arrangement around the metal ions. DNA binding ability of these complexes has been explored by different techniques viz, electronic absorption, fluorescence, cyclic voltammetry, differential pulse voltammetry and viscosity measurements. These studies prove that CT DNA interaction of the complexes follows intercalation mode. The oxidative cleavage of the complexes with pUC19 DNA has been investigated by gel electrophoresis. Molecular docking calculations have been performed to understand the nature of binding of the complexes with DNA. Moreover, the anti-pathogenic actions of the complexes were tested in vitro against few bacteria and fungi by disk diffusion method. The data reveal that the complexes have higher anti-pathogenic activity than the ligand. (C) 2015 Elsevier B.V. All rights reserved
    corecore