178 research outputs found

    Does hand position affect orienting when no action is required? An electrophysiological study

    Get PDF
    Previous research has shown that attention can be biased to targets appearing near the hand that require action responses, arguing that attention to the hand facilitates upcoming action. It is unclear whether attention orients to non-targets near the hand not requiring responses. Using electroencephalography/event-related potentials (EEG/ERP), this study investigated whether hand position affected visual orienting to non-targets under conditions that manipulated the distribution of attention. We modified an attention paradigm in which stimuli were presented briefly and rapidly on either side of fixation; participants responded to infrequent targets (15%) but not standard non-targets and either a hand or a block was placed next to one stimulus location. In Experiment 1, attention was distributed across left and right stimulus locations to determine whether P1 or N1 ERP amplitudes to non-target standards were differentially influenced by hand location. In Experiment 2, attention was narrowed to only one stimulus location to determine whether attentional focus affected orienting to non-target locations near the hand. When attention was distributed across both stimulus locations, the hand increased overall N1 amplitudes relative to the block but not selectively to stimuli appearing near the hand. However, when attention was focused on one location, amplitudes were affected by the location of attentional focus and the stimulus, but not by hand or block location. Thus, hand position appears to contribute only a non-location-specific input to standards during visual orienting, but only in cases when attention is distributed across stimulus locations

    Visual Performance Fields: Frames of Reference

    Get PDF
    Performance in most visual discrimination tasks is better along the horizontal than the vertical meridian (Horizontal-Vertical Anisotropy, HVA), and along the lower than the upper vertical meridian (Vertical Meridian Asymmetry, VMA), with intermediate performance at intercardinal locations. As these inhomogeneities are prevalent throughout visual tasks, it is important to understand the perceptual consequences of dissociating spatial reference frames. In all studies of performance fields so far, allocentric environmental references and egocentric observer reference frames were aligned. Here we quantified the effects of manipulating head-centric and retinotopic coordinates on the shape of visual performance fields. When observers viewed briefly presented radial arrays of Gabors and discriminated the tilt of a target relative to homogeneously oriented distractors, performance fields shifted with head tilt (Experiment 1), and fixation (Experiment 2). These results show that performance fields shift in-line with egocentric referents, corresponding to the retinal location of the stimulus

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention
    • …
    corecore