209 research outputs found

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    Electron cyclotron mass in undoped CdTe/CdMnTe quantum wells

    Full text link
    Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099m0m_0 to 0.112m0m_0 with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant α\alpha =0.32

    High carrier mobility in transparent Ba1-xLaxSnO3 crystals with a wide band gap

    Full text link
    We discovered that perovskite (Ba,La)SnO3 can have excellent carrier mobility even though its band gap is large. The Hall mobility of Ba0.98La0.02SnO3 crystals with the n-type carrier concentration of \sim 8-10\times10 19 cm-3 is found to be \sim 103 cm2 V-1s-1 at room temperature, and the precise measurement of the band gap \Delta of a BaSnO3 crystal shows \Delta=4.05 eV, which is significantly larger than those of other transparent conductive oxides. The high mobility with a wide band gap indicates that (Ba,La)SnO3 is a promising candidate for transparent conductor applications and also epitaxial all-perovskite multilayer devices

    Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet

    Full text link
    The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single crystals have been studied in the range between 15 and 100 cm-1, in magnetic fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some of the observed infrared-active excitations to electric-dipole transitions between ligand-field split states of Tb3+ ions. Anticrossing between the magnetic exchange excitation and the ligand-field transition occurs at the temperature between 60 and 80 K. The corresponding coupling energy for this interaction is 6 cm-1. Temperature-induced softening of the hybrid IR excitation correlates with the increase of the static dielectric constant. We discuss the possibility for hybrid excitations of magnons and ligand-field states and their possible connection to the magnetoelectric effect in Tb3Fe5O12.Comment: submitted to Phys. Rev. B on May 15th, 201

    Acceptor binding energies in GaN and AlN

    Full text link
    We employ effective mass theory for degenerate hole-bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×\times 6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zincblende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding energy dependence upon the crystal field splitting in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar `shallow' values to those in GaN, but with some important differences, which depend on the band structure parameterizations, especially the value of crystal field splitting used.Comment: REVTEX file - 1 figur

    Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface

    Get PDF
    A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which can be solved numerically using the standard grid methods

    Optical identification of hybrid magnetic and electric excitations in Dy3Fe5O12 garnet

    Full text link
    Far-infrared spectra of magneto-dielectric Dy3Fe5O12 garnet were studied between 13 and 100 cm-1 and at low temperatures between 5 and 80 K. A combination of transmission, reflectivity, and rotating analyzer ellipsometry was used to unambiguously identify the type of the dipole activity of the infrared modes. In addition to purely dielectric and magnetic modes, we observed several hybrid modes with a mixed magnetic and electric dipole activity. These modes originate from the superexchange between magnetic moments of Fe and Dy ions. Using 4x4 matrix formalism for materials with Mu=/=1, we modeled the experimental optical spectra and determined the far-infrared dielectric and magnetic permeability functions. The matching condition Mu(Wh)*Se=Eps(Wh)*Sm for the oscillator strengths Se(m) explains the observed vanishing of certain hybrid modes at Wh in reflectivity.Comment: paper and supplement appendi

    Electronic states and optical properties of GaAs/AlAs and GaAs/vacuum superlattices by the linear combination of bulk bands method

    Full text link
    The linear combination of bulk bands method recently introduced by Wang, Franceschetti and Zunger [Phys. Rev. Lett.78, 2819 (1997)] is applied to a calculation of energy bands and optical constants of (GaAs)n_n/(AlAs)n_n and (GaAs)n_n/(vacuum)n_n (001) superlattices with n ranging from 4 to 20. Empirical pseudopotentials are used for the calculation of the bulk energy bands. Quantum-confined induced shifts of critical point energies are calculated and are found to be larger for the GaAs/vacuum system. The E1E_1 peak in the absorption spectra has a blue shift and splits into two peaks for decreasing superlattice period; the E2E_2 transition instead is found to be split for large-period GaAs/AlAs superlattices. The band contribution to linear birefringence of GaAs/AlAs superlattices is calculated and compared with recent experimental results of Sirenko et al. [Phys. Rev. B 60, 8253 (1999)]. The frequency-dependent part reproduces the observed increase with decreasing superlattice period, while the calculated zero-frequency birefringence does not account for the experimental results and points to the importance of local-field effects.Comment: 10 pages, 11 .eps figures, 1 tabl

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]
    corecore