8,298 research outputs found

    A fundamental measure theory for the sticky hard sphere fluid

    Full text link
    We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Phys. Rev. Lett. {\bf 63}, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS fluid ΦSHS\Phi_{\text{SHS}} is uniquely defined when (a) it is solely a function of the weighted densities from Kierlik and Rosinberg's version of FMT [Phys. Rev. A {\bf 42}, 3382 (1990)], (b) it satisfies the SPT differential equation, and (c) it yields any given direct correlation function (DCF) from the class of generalized Percus-Yevick closures introduced by Gazzillo and Giacometti [J. Chem. Phys. {\bf 120}, 4742 (2004)]. The resulting DFT is shown to be in very good agreement with simulation data. In particular, this FMT yields the correct contact value of the density profiles with no adjustable parameters. Rather than requiring higher order DCFs, such as perturbative DFTs, our SHS FMT produces them. Interestingly, although equivalent to Kierlik and Rosinberg's FMT in the case of hard spheres, the set of weighted densities used for Rosenfeld's original FMT is insufficient for constructing a DFT which yields the SHS DCF.Comment: 11 pages, 3 figure

    Liquidity measures and cost of trading in an illiquid market

    Get PDF
    We provide the first in-depth study of trading on the Ukrainian stock exchange, using trade-by-trade data. Although Ukraine has some large listed companies, the market is quite illiquid. We study the efficiency of five liquidity measures in the market. The proportion of no-trading days is the most reliable of the five, while turnover, which is widely used in the literature, is a poor measure. On trading cost, trades in all size categories are executed within the quoted spread, as in other dealership markets, with medium-sized trades being the cheapest. The cost of sales is higher than the cost of purchases under all market conditions

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Occurence of elliptical fractal patterns in multi-bit bandpass sigma delta modulators

    Get PDF
    It has been established that the class of bandpass sigma delta modulators (SDMs) with single bit quantizers could exhibit state space dynamics represented by elliptic or fractal patterns confined within trapezoidal regions. In this letter, we find that elliptical fractal patterns may also occur in bandpass SDMs with multibit quantizers, even for the case when the saturation regions of the multibit quantizers are not activated and a large number of bits are used for the implementation of the quantizers. Moreover, the fractal pattern may occur for low bit quantizers, and the visual appearance of the phase portraits between the infinite state machine and the finite state machine with high bit quantizers is different. These phenomena are different from those previously reported for the digital filter with two’s complement arithmetic. Furthermore, some interesting phenomena are found. A bit change of the quantizer can result in a dramatic change in the fractal patterns. When the trajectories of the corresponding linear systems converge to a fixed point, the regions of the elliptical fractal patterns diminish in size as the number of bits of the quantizers increases

    Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism

    Full text link
    The freezing behavior of gold nanoclusters was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations of the gold nanoclusters revealed that, just after freezing, ordered nano-surfaces with a fivefold symmetry were formed with interior atoms remaining in the disordered state. Further lowering of temperatures induced nano-crystallization of the interior atoms that proceeded from the surface towards the core region, finally leading to an icosahedral structure. These dynamic processes explain why the icosahedral cluster structure is dominantly formed in spite of its energetic metastability.Comment: 9 pages, 4 figures(including 14 eps-files

    Spintessence: a possible candidate as a driver of the late time cosmic acceleration

    Full text link
    In this paper, it is shown completely analytically that a spintessence model can very well serve the purpose of providing an early deceleration and the present day acceleration.Comment: 5 pages, no figure. Accepted for publication in Astrophysics and Space Scienc
    corecore