118 research outputs found

    Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide

    Get PDF
    There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C(5) maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFkappaB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFkappaB and cell death through its direct inhibition of parthenolide's modulation of exofacial thiols.Based on these data, we postulate that one component of parthenolide's anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy

    Entourage: the immune microenvironment following follicular lymphoma

    Get PDF
    In follicular lymphoma, nonmalignant immune cells are important. Follicular lymphoma depends on CD4+ cells, but CD8+ cells counteract it. We hypothesized that the presence of follicular lymphoma is associated with higher CD4+ than CD8+ cell numbers in the tumor microenvironment but not in the immune system. Using flow cytometry, pre-treatment and follow-up CD4/CD8 ratios were estimated in the bone marrow, blood and lymph nodes of untreated follicular lymphoma patients in two independent data sets (N1=121; N2=166). The ratios were analyzed for their relation with bone marrow lymphoma involvement. Bone marrows were also investigated with immunohistochemistry. In either data set, the bone marrow CD4/CD8 ratios were higher in bone marrows involved with lymphoma (P=0.043 and 0.0002, respectively). The mean CD4/CD8 ratio was 1.0 in uninvolved and 1.4 in involved bone marrows. Also higher in involved bone marrows were CD4/CD56 and CD3CD25/CD3 ratios. No blood or lymph node ratios differed between bone marrow-negative and -positive patients. Sequential samples showed increased bone marrow CD4/CD8 ratios in all cases of progression to bone marrow involvement. Immunohistochemistry showed CD4+, CD57+, programmed death-1+, forkhead box protein 3+ and CD21+ cells accumulated inside the lymphoma infiltrates, whereas CD8+, CD56+ and CD68+ cells were outside the infiltrates. This study provides evidence in vivo that the microenvironment changes upon follicular lymphoma involvement

    The Four types of Tregs in malignant lymphomas

    Get PDF
    Regulatory T cells (Tregs) are a specialized subpopulation of CD4+ T cells, which act to suppress the activation of other immune cells. Tregs represent important modulators for the interaction between lymphomas and host microenvironment. Lymphomas are a group of serious and frequently fatal malignant diseases of lymphocytes. Recent studies revealed that some lymphoma T cells might adopt a Treg profile. Assessment of Treg phenotypes and genotypes in patients may offer prediction of outcome in many types of lymphomas including diffuse large B-cell lymphoma, follicular lymphoma, cutaneous T cell lymphoma, and Hodgkin's lymphoma. Based on characterized roles of Tregs in lymphomas, we can categorize the various roles into four groups: (a) suppressor Tregs; (b) malignant Tregs; (c) direct tumor-killing Tregs; and (d) incompetent Tregs. The classification into four groups is significant in predicting prognosis and designing Tregs-based immunotherapies for treating lymphomas. In patients with lymphomas where Tregs serve either as suppressor Tregs or malignant Tregs, anti-tumor cytotoxicity is suppressed thus decreased numbers of Tregs are associated with a good prognosis. In contrast, in patients with lymphomas where Tregs serve as tumor-killing Tregs and incompetent Tregs, anti-tumor cytotoxicity is enhanced or anti-autoimmune Tregs activities are weakened thus increased numbers of Tregs are associated with a good prognosis and reduced numbers of Tregs are associated with a poor prognosis. However, the mechanisms underlying the various roles of Tregs in patients with lymphomas remain unknown. Therefore, further research is needed in this regard as well as the utility of Tregs as prognostic factors and therapy strategies in different lymphomas

    IL-15 enhances cross-reactive antibody recall responses to seasonal H3 influenza viruses in vitro [version 1; referees: 2 approved]

    No full text
    Background: Recently, several human monoclonal antibodies that target conserved epitopes on the stalk region of influenza hemagglutinin (HA) have shown broad reactivity to influenza A subtypes. Also, vaccination with recombinant chimeric HA or stem fragments from H3 influenza viruses induce broad immune protection in mice and humans. However, it is unclear whether stalk-binding antibodies can be induced in human memory B cells by seasonal H3N2 viruses. Methods: In this study, we recruited 13 donors previously exposed to H3 viruses, the majority (12 of 13) of which had been immunized with seasonal influenza vaccines. We evaluated plasma baseline strain-specific and stalk-reactive anti-HA antibodies and B cell recall responses to inactivated H3N2 A/Victoria/361/2011 virus in vitro using a high throughput multiplex (mPlex-Flu) assay. Results: Stalk-reactive IgG was detected in the plasma of 7 of the subjects. Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive antibodies were detected in culture supernatants from 7 of the 13 donors (53.8%).  H3 stalk-reactive antibodies were also induced by H1 and H7 subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3 strains were also enhanced by stimulating B cells in vitro with CpG2006 ODN in the presence of IL-15. H3 stalk-reactive antibodies were detected in  CpG2006 ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors (92.3%), with high levels detected in cultures from 7 of the 13 donors. Conclusions: Our results demonstrate that stalk-reactive antibody recall responses induced by seasonal H3 viruses and CpG2006 ODN can be enhanced by IL-15

    First Impressions Matter: Immune Imprinting and Antibody Cross-Reactivity in Influenza and SARS-CoV-2

    No full text
    Many rigorous studies have shown that early childhood infections leave a lasting imprint on the immune system. The understanding of this phenomenon has expanded significantly since 1960, when Dr. Thomas Francis Jr first coined the term “original antigenic sin”, to account for all previous pathogen exposures, rather than only the first. Now more commonly referred to as “immune imprinting”, this effect most often focuses on how memory B-cell responses are shaped by prior antigen exposure, and the resultant antibodies produced after subsequent exposure to antigenically similar pathogens. Although imprinting was originally observed within the context of influenza viral infection, it has since been applied to the pandemic coronavirus SARS-CoV-2. To fully comprehend how imprinting affects the evolution of antibody responses, it is necessary to compare responses elicited by pathogenic strains that are both antigenically similar and dissimilar to strains encountered previously. To accomplish this, we must be able to measure the antigenic distance between strains, which can be easily accomplished using data from multidimensional immunological assays. The knowledge of imprinting, combined with antigenic distance measures, may allow for improvements in vaccine design and development for both influenza and SARS-CoV-2 viruses
    • 

    corecore