1,339 research outputs found

    Azimuthal spin asymmetries in light-cone constituent quark models

    Full text link
    We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 23 pages, 14 figures, 1 tabl

    TMDs and Azimuthal Spin Asymmetries in a Light-Cone Quark Model

    Get PDF
    The main properties of the leading-twist transverse momentum dependent parton distributions in a light-cone constituent quark model of the nucleon are reviewed, with focus on the role of the spin-spin and spin-orbit correlations of quarks. Results for azimuthal single spin asymmetries in semi-inclusive deep inelastic scattering are also discussed.Comment: Proceedings of SPIN2008, 6-11 October 2008, Charlottesville, VA, US

    Transverse momentum dependent parton distributions and azimuthal asymmetries in light-cone quark models

    Full text link
    We review the information on the spin and orbital angular momentum structure of the nucleon encoded in the T-even transverse momentum dependent parton distributions within light-cone quark models. Model results for azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering are discussed, showing a good agreement with available experimental data and providing predictions to be further tested by future CLAS, COMPASS and HERMES data.Comment: 6 pages, 4 figures; proceedings of the "XIII Workshop On High Energy Spin Physics Dubna Spin 2009", 1-5 September 2009, Dubna, Russi

    Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions

    Get PDF
    We study the single-spin (left-right) asymmetry in single-inclusive pion production in hadronic scattering. This asymmetry is power-suppressed in the transverse momentum of the produced pion and can be analyzed in terms of twist-three parton correlation functions in the proton. We present new calculations of the corresponding partonic hard-scattering functions that include the so-called "non-derivative" contributions not previously considered in the literature. We find a remarkably simple structure of the results. We also present a brief phenomenological study of the spin asymmetry, taking into account data from fixed-target scattering and also the latest information available from RHIC. We make additional predictions that may be tested experimentally at RHIC.Comment: 32 pages, 14 figure

    Sivers effect in Drell Yan at RHIC

    Full text link
    On the basis of a fit to the Sivers effect in deep-inelastic scattering, we make predictions for single-spin asymmetries in the Drell-Yan process at RHIC.Comment: 10 pages, 7 figures, 1 table. v2: References and comments added, minor correction

    Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion

    Full text link
    Transverse parton momentum dependent distribution functions (TMDs) of the nucleon are studied in a covariant model, which describes the intrinsic motion of partons in terms of a covariant momentum distribution. The consistency of the approach is demonstrated, and model relations among TMDs are studied. As a byproduct it is shown how the approach allows to formulate the non-relativistic limit.Comment: 16 page

    Seasonal Change of the Ozone Layer State over Yakutia

    Full text link
    The ozone layer state in the stratosphere over Yakutia depending on the year time is considered. It is shown that the layer thickness is maximum in February-March (450 Dobson's units) and it is minimum in July-September (300 - 350 DU). Measurements indicate that the ozone layer thickness was significantly decreased in the 1990's. A problem of change of ozone layer state is discussed.Comment: 3 pages, 2 figure

    Anisotropically high entanglement of biphotons generated in spontaneous parametric down conversion

    Get PDF
    We show that the wave packet of a biphoton generated via spontaneous parametric down conversion is strongly anisotropic. Its anisotropic features manifest themselves very clearly in comparison of measurements performed in two different schemes: when the detector scanning plane is perpendicular or parallel to the plane containing the crystal optical axis and the laser axis. The first of these two schemes is traditional whereas the second one gives rise to such unexpected new results as anomalously strong narrowing of the biphoton wave packet measured in the coincidence scheme and very high degree of entanglement. The results are predicted theoretically and confirmed experimentally

    Collinear Factorization for Single Transverse-Spin Asymmetry in Drell-Yan Processes

    Full text link
    We study the scattering of a single parton state with a multi-parton state to derive the complete results of perturbative coefficient functions at leading order, which appear in the collinear factorization for Single transverse-Spin Asymmetry(SSA) in Drell-Yan processes with a transversely polarized hadron in the initial state. We find that the factorization formula of SSA contains hard-pole-, soft-quark-pole- and soft-gluon-pole contributions. It is interesting to note that the leading order perturbative coefficient functions of soft-quark-pole- and soft-gluon-pole contributions are extracted from parton scattering amplitudes at one-loop, while the functions of hard-pole contributions are extracted from the tree level amplitudes at tree-level. Our method to derive the factorization of SSA is different than the existing one in literature. A comparison of our results with those obtained by other method is made.Comment: 27 pages, 14 figures, text improved, to appear in Phys. Rev.

    Structure and Mass of a Young Globular Cluster in NGC 6946

    Get PDF
    Using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we have imaged a luminous young star cluster in the nearby spiral galaxy NGC 6946. The cluster has an absolute visual magnitude M(V)=-13.2, comparable to the brightest young `super-star clusters' in the Antennae merger galaxy. UBV colors indicate an age of about 15 Myr. The cluster has a compact core (core radius = 1.3 pc), surrounded by an extended envelope. We estimate that the effective radius (Reff) = 13 pc, but this number is uncertain because the outer parts of the cluster profile gradually merge with the general field. Combined with population synthesis models, the luminosity and age of the cluster imply a mass of 8.2x10^5 Msun for a Salpeter IMF extending down to 0.1 Msun, or 5.5x10^5 Msun if the IMF is log-normal below 0.4 Msun. Depending on model assumptions, the central density of the cluster is between 5300 Msun pc^-3 and 17000 Msun pc^-3, comparable to other high-density star forming regions. We also estimate a dynamical mass for the cluster, using high-dispersion spectra from the HIRES spectrograph on the Keck I telescope. The velocity dispersion is 10.0 +/- 2.7 km/s, implying a total cluster mass within 65 pc of (1.7 +/- 0.9) x 10^6 Msun. Comparing the dynamical mass with the mass estimates based on the photometry and population synthesis models, the mass-to-light ratio is at least as high as for a Salpeter IMF extending down to 0.1 Msun, although a turn-over in the IMF at 0.4 Msun is still possible within the errors. The cluster will presumably remain bound, evolving into a globular cluster-like object.Comment: 33 pages, including 10 figures and 3 tables. Accepted for publication in the Astrophysical Journa
    corecore