19,549 research outputs found
Anomalies in Ward Identities for Three-Point Functions Revisited
A general calculational method is applied to investigate symmetry relations
among divergent amplitudes in a free fermion model. A very traditional work on
this subject is revisited. A systematic study of one, two and three point
functions associated to scalar, pseudoscalar, vector and axial-vector densities
is performed. The divergent content of the amplitudes are left in terms of five
basic objects (external momentum independent). No specific assumptions about a
regulator is adopted in the calculations. All ambiguities and symmetry
violating terms are shown to be associated with only three combinations of the
basic divergent objects. Our final results can be mapped in the corresponding
Dimensional Regularization calculations (in cases where this technique could be
applied) or in those of Gertsein and Jackiw which we will show in detail. The
results emerging from our general approach allow us to extract, in a natural
way, a set of reasonable conditions (e.g. crucial for QED consistency) that
could lead us to obtain all Ward Identities satisfied. Consequently, we
conclude that the traditional approach used to justify the famous triangular
anomalies in perturbative calculations could be questionable. An alternative
point of view, dismissed of ambiguities, which lead to a correct description of
the associated phenomenology, is pointed out.Comment: 26 pages, Revtex, revised version, Refs. adde
Predictable arguments of knowledge
We initiate a formal investigation on the power of predictability for argument of knowledge systems for NP. Specifically, we consider private-coin argument systems where the answer of the prover can be predicted, given the private randomness of the verifier; we call such protocols Predictable Arguments of Knowledge (PAoK).
Our study encompasses a full characterization of PAoK, showing that such arguments can be made extremely laconic, with the prover sending a single bit, and assumed to have only one round (i.e., two messages) of communication without loss of generality.
We additionally explore PAoK satisfying additional properties (including zero-knowledge and the possibility of re-using the same challenge across multiple executions with the prover), present several constructions of PAoK relying on different cryptographic tools, and discuss applications to cryptography
More is Less: Perfectly Secure Oblivious Algorithms in the Multi-Server Setting
The problem of Oblivious RAM (ORAM) has traditionally been studied in a
single-server setting, but more recently the multi-server setting has also been
considered. Yet it is still unclear whether the multi-server setting has any
inherent advantages, e.g., whether the multi-server setting can be used to
achieve stronger security goals or provably better efficiency than is possible
in the single-server case.
In this work, we construct a perfectly secure 3-server ORAM scheme that
outperforms the best known single-server scheme by a logarithmic factor. In the
process, we also show, for the first time, that there exist specific algorithms
for which multiple servers can overcome known lower bounds in the single-server
setting.Comment: 36 pages, Accepted in Asiacrypt 201
Commissioning of the electron injector for the AWAKE experiment
The advanced wakefield experiment (AWAKE) at CERN is the first proton beam-driven plasma wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate seeded self-modulation (SSM) of the proton beam and electron witness beam acceleration in the plasma wakefield. For the AWAKE experiment, a 10-meter-long Rubidium-vapor cell together with a high-power laser for ionization was used to generate the plasma. The plasma wakefield is driven by a 400 GeV/c proton beam extracted from the super proton synchrotron (SPS), which undergoes a seeded self-modulation process in the plasma. The electron witness beam used to probe the wakefields is generated from an S-band RF photo-cathode gun and then accelerated by a booster structure up to energies between 16 and 20 MeV. The first run of the AWAKE experiment revealed that the maximum energy gain after the plasma cell is 2 GeV, and the SSM mechanism of the proton beam was verified. In this paper, we will present the details of the AWAKE electron injector. A comparison of the measured electron beam parameters, such as beam size, energy, and normalized emittance, with the simulation results was performed
Rotational covariance and light-front current matrix elements
Light-front current matrix elements for elastic scattering from hadrons with
spin~1 or greater must satisfy a nontrivial constraint associated with the
requirement of rotational covariance for the current operator. Using a model
meson as a prototype for hadronic quark models, this constraint and its
implications are studied at both low and high momentum transfers. In the
kinematic region appropriate for asymptotic QCD, helicity rules, together with
the rotational covariance condition, yield an additional relation between the
light-front current matrix elements.Comment: 16 pages, [no number
Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles
We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy
Possible evidence of non-Fermi liquid behavior from quasi-one-dimensional indium nanowires
We report possible evidence of non-Fermi liquid (NFL) observed at room
temperature from the quasi one-dimensional (1D) indium (In) nanowires
self-assembled on Si(111)-77 surface. Using high-resolution
electron-energy-loss spectroscopy, we have measured energy and width
dispersions of a low energy intrasubband plasmon excitation in the In
nanowires. We observe the energy-momentum dispersion (q) in the low q
limit exactly as predicted by both NFL theory and the
random-phase-approximation. The unusual non-analytic width dispersion measured with an exponent =1.400.24, however,
is understood only by the NFL theory. Such an abnormal width dispersion of low
energy excitations may probe the NFL feature of a non-ideal 1D interacting
electron system despite the significantly suppressed spin-charge separation
(40 meV).Comment: 11 pages and 4 figure
- …