18 research outputs found
Highly-improved lattice field-strength tensor
We derive an O(a^4)-improved lattice version of the continuum field-strength
tensor. Discretization errors are reduced via the combination of several clover
terms of various sizes, complemented by tadpole improvement. The resulting
improved field-strength tensor is used to construct O(a^4)-improved topological
charge and action operators. We compare the values attained by these operators
as we cool several configurations to self-duality with a previously defined
highly-improved action and assess the relative scale of the remaining
discretization errors.Comment: 22 pages, 7 postscript figure
Locality and Translations in Braided Ribbon Networks
An overview of microlocality in braided ribbon networks is presented.
Following this, a series of definitions are presented to explore the concept of
microlocality and the topology of ribbon networks. Isolated substructure of
ribbon networks are introduced, and a theorem is proven that allows them to be
relocated. This is followed by a demonstration of microlocal translations.
Additionally, an investigation into macrolocality and the implications of
invariants in braided ribbon networks are presented.Comment: 12 pages, 12 figure
Quantum gravity and the standard model
We show that a class of background independent models of quantum spacetime
have local excitations that can be mapped to the first generation fermions of
the standard model of particle physics. These states propagate coherently as
they can be shown to be noiseless subsystems of the microscopic quantum
dynamics. These are identified in terms of certain patterns of braiding of
graphs, thus giving a quantum gravitational foundation for the topological
preon model proposed by one of us.
These results apply to a large class of theories in which the Hilbert space
has a basis of states given by ribbon graphs embedded in a three-dimensional
manifold up to diffeomorphisms, and the dynamics is given by local moves on the
graphs, such as arise in the representation theory of quantum groups. For such
models, matter appears to be already included in the microscopic kinematics and
dynamics.Comment: 12 pages, 21 figures, improved presentation, results unchange
Excited Baryons in Lattice QCD
We present first results for the masses of positive and negative parity
excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action
and a fat-link irrelevant clover (FLIC) fermion action in which only the
irrelevant operators are constructed with APE-smeared links. The results are in
agreement with earlier calculations of N^* resonances using improved actions
and exhibit a clear mass splitting between the nucleon and its chiral partner.
An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a
small mass splitting. The study of different Lambda interpolating fields
suggests a similar splitting between the lowest two Lambda1/2^- octet states.
However, the empirical mass suppression of the Lambda^*(1405) is not evident in
these quenched QCD simulations, suggesting a potentially important role for the
meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating
fields.Comment: Correlation matrix analysis performed. Increased to 400
configurations. 22 pages, 13 figures, 15 table
Hadron Properties with FLIC Fermions
The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of
nonperturbative O(a)-improvement in lattice fermion actions offering near
continuum results at finite lattice spacing. It provides computationally
inexpensive access to the light quark mass regime of QCD where chiral
nonanalytic behaviour associated with Goldstone bosons is revealed. The
motivation and formulation of FLIC fermions, its excellent scaling properties
and its low-lying hadron mass phenomenology are presented.Comment: 29 pages, 13 figures, 6 tables. Contribution to lecure notes in 2nd
Cairns Topical Workshop on Lattice Hadron Physics 2003 (LHP 2003), Cairns,
Australia, 22-30 Jul 200
Conserved Quantities in Background Independent Theories
We discuss the difficulties that background independent theories based on
quantum geometry encounter in deriving general relativity as the low energy
limit. We follow a geometrogenesis scenario of a phase transition from a
pre-geometric theory to a geometric phase which suggests that a first step
towards the low energy limit is searching for the effective collective
excitations that will characterize it. Using the correspondence between the
pre-geometric background independent theory and a quantum information
processor, we are able to use the method of noiseless subsystems to extract
such coherent collective excitations. We illustrate this in the case of locally
evolving graphs.Comment: 11 pages, 3 figure
Numerical study of lattice index theorem usingimproved cooling and overlap fermions
We investigate topological charge and the index theorem on finite lattices
numerically. Using mean field improved gauge field configurations we calculate
the topological charge Q using the gluon field definition with -improved cooling and an -improved field strength tensor
. We also calculate the index of the massless overlap fermion
operator by directly measuring the differences of the numbers of zero modes
with left- and right--handed chiralities. For sufficiently smooth field
configurations we find that the gluon field definition of the topological
charge is integer to better than 1% and furthermore that this agrees with the
index of the overlap Dirac operator, i.e., the Atiyah-Singer index theorem is
satisfied. This establishes a benchmark for reliability when calculating
lattice quantities which are very sensitive to topology.Comment: 15 pages, 1 figure
A cyclic universe with colour fields
The topology of the universe is discussed in relation to the singularity
problem. We explore the possibility that the initial state of the universe
might have had a structure with 3-Klein bottle topology, which would lead to a
model of a nonsingular oscillating (cyclic) universe with a well-defined
boundary condition. The same topology is assumed to be intrinsic to the nature
of the hypothetical primitive constituents of matter (usually called preons)
giving rise to the observed variety of elementary particles. Some
phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio