15 research outputs found

    Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions

    Get PDF
    Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications

    Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite

    No full text
    ABSTRACT: This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and Al2O3-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. Keywords: Carbon fiber reinforced polymer, Delamination, Fracture test, Nanofibers, Al2O3. nanoparticle

    Cytocompatibility and Antibacterial Properties of Coaxial Electrospun Nanofibers Containing Ciprofloxacin and Indomethacin Drugs.

    Get PDF
    A coaxial nanofibrous scaffold of poly (ε-caprolactone) and gelatin/cellulose acetate encapsulating anti-inflammatory and antibacterial drugs was co-electrospun for skin tissue regeneration. Indomethacin and ciprofloxacin as model drugs were added to the core and the shell solutions, respectively. The effect of the drugs' presence and crosslinking on the scaffold properties was investigated. TEM images confirmed the core-shell structure of the scaffold. The fiber diameter and the pore size of the scaffold increased after crosslinking. The tensile properties of the scaffold improved after crosslinking. The crosslinked scaffold illustrated a higher rate of swelling, and a lower rate of degradation and drug release compared to the uncrosslinked one. Fitting the release data into the Peppas equation showed that Fickian diffusion was the dominant mechanism of drug release from the scaffolds. The results of biocompatibility evaluations showed no cytotoxicity and suitable adhesion and cell growth on the prepared core-shell structure. The antibacterial activity of the scaffolds was studied against one of the most common pathogens in skin wounds, where the existence of ciprofloxacin could prevent the growth of the Staphylococcus aureus bacteria around the scaffold. The obtained results suggested a new coaxial nanofibrous scaffold as a promising candidate for simultaneous tissue regeneration and controlled drug release

    Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds

    No full text
    Biphasic calcium phosphates (BCP) scaffolds are widely used for bone tissue regeneration. However, brittleness, low mechanical properties and compromised bioactivities are, at present, their major disadvantages. In this study we coated the struts of a BCP scaffold with a nanocomposite layer consisting of bioactive glass nanoparticles (nBG) and polycaprolactone (PCL) (BCP/PCL-nBG) to enhance its mechanical and biological behavior. The effect of various nBG concentrations (1-90 wt.%) on the mechanical properties and in vitro behavior of the scaffolds was comprehensively examined and compared with that for a BCP scaffold coated with PCL and hydroxyapatite nanoparticles (nHA) (BCP/PCL-nHA) and a BCP scaffold coated with only a PCL layer (BCP/PCL). Introduction of 1-90 wt.% nBG resulted in scaffolds with compressive strengths in the range 0.2-1.45 MPa and moduli in the range 19.3-49.4 MPa. This trend was also observed for BCP/PCL-nHA scaffolds, however, nBG induced even better bioactivity and a faster degradation rate. The maximum compressive strength (increased ∼14 times) and modulus (increased ∼3 times) were achieved when 30 wt.% nBG was added, compared with BCP scaffolds. Moreover, BCP/PCL-nBG scaffolds induced the differentiation of primary human bone-derived cells (HOBs), with significant up-regulation of osteogenic gene expression for Runx2, osteopontin and bone sialoprotein, compared with the other groups.12 page(s

    Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles

    No full text
    In this study, the effects of bioactive glass nanoparticles' (nBGs) size and shape incorporated into hydroxyapatite/β-tricalcium phosphate (BCP) scaffolds were investigated. We prepared a highly porous (> 85%) BCP scaffold and coated its surface with a nanocomposite layer consisted of polycaprolactone (PCL) and rod (∼153 nm in height and ∼29 nm in width) or spherical (∼33 nm and 64 nm in diameter) nBGs. Osteogenic gene expression by primary human osteoblast-like cells (HOB) was investigated using quantitative real time polymerase chain reaction (q-RT-PCR). We demonstrated for the first time that in vitro osteogenesis is dramatically affected by the shape of the nBGs, whereby rod shaped nBGs showed the most significant osteogenic induction, compared to spherical particles (regardless of their size). Importantly, the good biological effect observed for the rod shaped nBGs was coupled by a marked increase in the modulus (∼48 MPa), compressive strength (∼1 MPa) and failure strain (∼6%), compared to those for the BCP scaffolds (∼4 MPa, ∼1 MPa and ∼0.5% respectively). The findings of this study demonstrated that the shape of the nBGs is of significant importance when considering bone regeneration.10 page(s
    corecore