340 research outputs found
Vetronics Architecture with in vehicle Networking
The effectiveness of combat and combat support vehicles platforms can be improved significantly by incorporating Vetronics concept at the platform design stage itself which allows on-board systems to be interconnected as networks and enables them not only to share the information with-in the platform but also with the neighbouring platforms. The Vetronics concept not only optimises the on-board computing resources and other electronic sub-systems, also aids in easier platform integration. The Vetronics architecture with in-vehicle networking can be conceived and optimised based for vehicle type, requirement of types of systems envisaged for integration and having a balance between standard and customised components. The conceptual architecture proposed in this paper brings out the benefits offered by Vetronics approach for integration of on-board sub-systems thereby enhancing the platform effectiveness and Battlefield Management System for in-service and futuristic platforms considering the space as one of the major constraints. The proposed concept is adaptable, flexible and scalable enabling integration of the various electronic sub-systems
PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury.
Stroke is a leading cause of death and long-term disability in industrialized countries. Despite advances in understanding its pathophysiology, little progress has been made in the treatment of stroke. The currently available therapies have proven to be highly unsatisfactory (except thrombolysis) and attempts are being made to identify and characterize signaling proteins which could be exploited to design novel therapeutic modalities. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control lipid and glucose metabolism. PPARs regulate gene expression by binding with the retinoid X receptor (RXR) as a heterodimeric partner to specific DNA sequences, termed PPAR response elements. In addition, PPARs may modulate gene transcription also by directly interfering with other transcription factor pathways in a DNA-binding independent manner. To date, three different PPAR isoforms, designated α, β/ δ, and γ, have been identified. Recently, they have been found to play an important role for the pathogenesis of various disorders of the central nervous system and accumulating data suggest that PPARs may serve as potential targets for treating ischemic stroke. Activation of all PPAR isoforms, but especially of PPAR γ, was shown to prevent post-ischemic inflammation and neuronal damage in several in vitro and in vivo models, negatively regulating the expression of genes induced by ischemia/ reperfusion (I/R). This paper reviews the evidence and recent developments relating to the potential therapeutic effects of PPAR-agonists in the treatment of cerebral I/R injury
The NLRP3 Inflammasome as a Novel Player of the Intercellular Crosstalk in Metabolic Disorders
The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1β and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation
Spontaneous intravesical knotting of infant feeding tube: a rare case report
Infant Feeding tube is universally used in Paediatric Patients for many diagnostic as well as therapeutic purposes. Intravesical knotting of IFT is rare but having significant morbidity. We here present such a rare case report in 6 month old patient treated endoscopically. Sometimes it is very difficult to remove knotting with various techniques discussed later, but it may cause more trauma to urethra. There are only few reported cases worldwide about it in few journals. But Endoscopic removal being safe among all. In such Urological Emergency, always early Identification is most important to prevent further complications. As neonate and infant’s urethra is small compared to the available smallest Foley catheter (8Fr), a 5 Fr and 8 Fr feeding tubes are practical alternatives to drain urine from the bladder. Intravesical catheter knotting of small feeding tubes placed as urinary diversion from the bladder is rare. The first case of catheter knotting in a pediatric patient was reported in 1976
Giant prostatic hyperplasia: surgical treatment a rare case
We report a rare case of giant prostatic hyperplasia in an 80-year-old male patient. MRI revealed a markedly enlarged prostate measuring 814gm.We have performed suprapubic open prostatectomy (Transvesical). The adenoma was completely enucleated in one piece which was 11cm×16cm in size and weighed 504gm
Percutaneous Closure of an Aortic Pseudoaneurysm Due to Saphenous Vein Graft Dehiscence With an Amplatzer Vascular Plug
Tàpies Puig, Antoni; Garcés, Jordi; Sòria, EnricPla general de l'entrada a l'espai de
reflexió on s'aprecia el fons un díptic
de 3 per 5 metres amb la silueta
campana
Effect of Intubation Timing on the Outcome of Patients With Severe Respiratory Distress Secondary to COVID-19 Pneumonia.
Background: The optimal timing of intubation for critically ill patients with severe respiratory illness remains controversial among healthcare providers. The coronavirus disease 2019 (COVID-19) pandemic has raised even more questions about when to implement this life-saving therapy. While one group of providers prefers early intubation for patients with respiratory distress because these patients may deteriorate rapidly without it, other providers believe that intubation should be delayed or avoided because of its associated risks including worse outcomes.
Research question: Our objective was to assess whether the timing of intubation in patients with severe COVID-19 pneumonia was associated with differences in mortality or other outcomes.
Study design and methods: This was a single-center retrospective observational cohort study. We analyzed outcomes of patients who were intubated secondary to COVID-19 pneumonia between March 13, 2020, and December 12, 2020, at Henry Ford Hospital in Detroit, Michigan. Patients were categorized into two groups: early intubated (intubated within 24 hours of the onset of severe respiratory distress) and late intubated (intubated after 24 hours of the onset of severe respiratory distress). Demographics, comorbidities, respiratory rate oxygenation (ROX) index, sequential organ failure assessment (SOFA) score, and treatment received were compared between groups. The primary outcome was mortality. Secondary outcomes were ventilation time, intensive care unit stay, hospital length of stay, and discharge disposition. Post hoc and Kaplan-Meier survival analyses were performed.
Results: A total of 110 patients were included: 55 early intubated and 55 late intubated. We did not observe a significant difference in overall mortality between the early intubated (43%) and the late intubated groups (53%) (p = 0.34). There was no statistically significant difference in patients\u27 baseline characteristics including SOFA scores (the early intubation group had a mean score of 7.5 compared to 6.7 in the late intubation group). Based on the ROX index, the early intubation group had significantly more patients with a reduced risk of intubation (45%) than the late group (27%) (p = 0.029). The early intubation group was treated with a high-flow nasal cannula at a significantly lower rate (47%) than the late intubation group (83%) (p \u3c 0.001). Significant differences in patient baseline characteristics, treatment received, and other outcomes were not observed. Post hoc analysis adjusting for SOFA score between 0 and 9 revealed significantly higher mortality in the late intubation group (49%) than in the early intubation group (26%) (p = 0.03). Patients in the 0 to 9 SOFA group who were intubated later had 2.7 times the odds of dying during hospital admission compared to patients who were intubated early (CI, 1.09-6.67).
Interpretation: The timing of intubation for patients with severe COVID-19 pneumonia was not significantly associated with overall mortality or other patient outcomes. However, within the subgroup of patients with SOFA scores of 9 or lower at the time of intubation, patients intubated after 24 hours of the onset of respiratory distress had a higher risk of death than those who were intubated within 24 hours of respiratory distress. Thus, patients with COVID-19 pneumonia who are not at a high level of organ dysfunction may benefit from early mechanical ventilation
Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.
Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans
The Rapid Outbursting Star GM Cep: An EX-or in Tr 37?
We present optical, IR and millimeter observations of the solar-type star
13-277, also known as GM Cep, in the 4 Myr-old cluster Tr 37. GM Cep
experiences rapid magnitude variations of more than 2 mag at optical
wavelengths. We explore the causes of the variability, which seem to be
dominated by strong increases in the accretion, being similar to EX-or
episodes. The star shows high, variable accretion rates (up to ~10
Msun/yr), signs of powerful winds, and it is a very fast rotator (Vsini~43
km/s). Its strong mid-IR excesses reveal a very flared disk and/or a remnant
envelope, most likely out of hydrostatic equilibrium. The 1.3 millimeter fluxes
suggest a relatively massive disk (Mdisk~0.1 Msun). Nevertheless, the
millimeter mass is not enough to sustain increased accretion episodes over
large timescales, unless the mass is underestimated due to significant grain
growth. We finally explore the possibility of GM Cep having a binary companion,
which could trigger disk instabilities producing the enhanced accretion
episodes.Comment: 43 pages, including 10 figures, ApJ in pres
- …