257 research outputs found
Classification of one-dimensional quasilattices into mutual local-derivability classes
One-dimensional quasilattices are classified into mutual local-derivability
(MLD) classes on the basis of geometrical and number-theoretical
considerations. Most quasilattices are ternary, and there exist an infinite
number of MLD classes. Every MLD class has a finite number of quasilattices
with inflation symmetries. We can choose one of them as the representative of
the MLD class, and other members are given as decorations of the
representative. Several MLD classes of particular importance are listed. The
symmetry-preserving decorations rules are investigated extensively.Comment: 42 pages, latex, 5 eps figures, Published in JPS
Binary self-similar one-dimensional quasilattices: Mutual local-derivability classification and substitution rules
Self-similar binary one-dimensional (1D) quasilattices (QLs) are classified
into mutual local-derivability (MLD) classes. It is shown that the MLD
classification is closely related to the number-theoretical classification of
parameters which specify the self-similar binary 1D QLs. An algorithm to derive
an explicit substitution rule, which prescribes the transformation of a QL into
another QL in the same MLD class, is presented. An explicit inflation rule,
which prescribes the transformation of the self-similar 1D QL into itself, is
obtained as a composition of the explicit substitution rules. Symmetric
substitution rules and symmetric inflation rules are extensively discussed.Comment: 24 pages, 4 figures, submitted to PR
Measurement of Single and Double Spin-Flip Probabilities in Inelastic Deuteron Scattering on 12C at 270 MeV
The deuteron single and double spin-flip probabilities, S1 and S2, have been
measured for the 12C(pol{d},pol{d}') reaction at Ed = 270 MeV for an excitation
energy range between 4 and 24 MeV and a scattering angular range between
Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values
depending on the structure of the excited state. The S2 is close to zero over
the measured excitation energy range. The SFP angular distribution data for the
2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic
DWIA calculations
Electronic Theory for the Transition from Fermi-Liquid to Non-Fermi-Liquid Behavior in High-T Superconductors
We analyze the breakdown of Fermi-liquid behavior within the 2D Hubbard model
as function of doping using our recently developed numerical method for the
self consistent summation of bubble and ladder diagrams. For larger doping
concentrations the system behaves like a conventional Fermi-liquid and for
intermediate doping similar to a marginal Fermi-liquid. However, for smaller
doping pronounced deviations from both pictures occur which are due to the
increasing importance of the short range antiferromagnetic spin fluctuations.
This is closely related to the experimental observed shadow states in the
normal state of high- superconductors. Furthermore, we discuss the
implications of our results for transport experiments.Comment: 11 pages (REVTeX) with 4 figures (Postscript
Two-dimensional XY spin/gauge glasses on periodic and quasiperiodic lattices
Via Monte Carlo studies of the frustrated XY or classical planar model we
demonstrate the possibility of a finite (nonzero) temperature spin/gauge glass
phase in two dimensions. Examples of both periodic and quasiperiodic two
dimensional lattices, where a high temperature paramagnetic phase changes to a
spin/gauge glass phase with the lowering of temperature, are presented. The
existence of the spin/gauge glass phase is substantiated by our study of the
temperature dependence of the Edwards-Anderson order parameter, spin glass
susceptibility, linear susceptibility and the specific heat. Finite size
scaling analysis of spin glass susceptibility and order parameter yields a
nonzero critical temperature and exponents that are in close agreement with
those obtained by Bhatt and Young in their random Ising model study
on a square lattice. These results suggest that certain periodic and
quasiperiodic two-dimensional arrays of superconducting grains in suitably
chosen transverse magnetic fields should behave as superconducting glasses at
low temperatures.Comment: RevTex, 25 pages. 11 epsf figures available upon request
([email protected] or [email protected]). Submitted
to Phys. Rev.
Periodic features in the Dynamic Structure Factor of the Quasiperiodic Period-doubling Lattice
We present an exact real-space renormalization group (RSRG) method for
evaluating the dynamic structure factor of an infinite one-dimensional
quasiperiodic period-doubling (PD) lattice. We observe that for every normal
mode frequency of the chain, the dynamic structure factor always
exhibits periodicity with respect to the wave vector and the presence of
such periodicity even in absence of translational invariance in the system is
quite surprising. Our analysis shows that this periodicity in
actually indicates the presence of delocalized phonon modes in the PD chain.
The Brillouin Zones of the lattice are found to have a hierarchical structure
and the dispersion relation gives both the acoustic as well as optical
branches. The phonon dispersion curves have a nested structure and we have
shown that it is actually the superposition of the dispersion curves of an
infinite set of periodic lattices.Comment: 9 pages, 3 postscript figures, REVTeX, To appear in Phys. Rev. B (1
February 1998-I
Elastic and Inelastic Scattering of 35-MeV Neutrons by 32S
開始ページ、終了ページ: 冊子体のページ付
(p, n) Reaction on Cd and Sn Isotopes
開始ページ、終了ページ: 冊子体のページ付
Spectroscopic Study of 41,45Sc Nuclei Through (d,n) Reactions on 40,44Ca at 25 MeV
開始ページ、終了ページ: 冊子体のページ付
- …