2,713 research outputs found

    Discovery of orbital decay in SMC X-1

    Get PDF
    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system

    The Determination of the `Diffusion Coefficients' and the Stellar Wind Velocities for X-Ray Binaries

    Get PDF
    The distribution of neutron stars (NS's) is determined by stationary solution of the Fokker-Planck equation. In this work using the observed period changes for four systems: Vela X-1, GX 301-2, Her X-1 and Cen X-3 we determined D, the 'diffusion coefficient',-parameter from the Fokker-Planck equation. Using strong dependence of D on the velocity for Vela X-1 and GX 301-2, systems accreting from a stellar wind, we determined the stellar wind velocity. For different assumptions for a turbulent velocity we obtained V=(6601440)kms1V=(660-1440) km s ^{-1}. It is in good agreement with the stellar wind velocity determined by other methods. We also determined the specific characteristic time scales for the 'diffusion processes' in X-ray pulsars. It is of order of 200 sec for wind-fed pulsars and 1000-10000 sec for the disk accreting systems.Comment: 8 pages, Latex, no figures, accepted for publication to Astronomical and Astrophysical Transactions (1995). Admin note 20Feb2000: original (broken) version now paper.tex.orig in source; fixed version with two bad equations set in verbatim used for PS, paper.tex in sourc

    Correlation between X-ray flux and rotational acceleration in Vela X-1

    Get PDF
    The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed

    Spectral variations of the X-ray binary pulsar LMC X-4 during its long period intensity variation and a comparison with Her X-1

    Get PDF
    We present spectral variations of the binary X-ray pulsar LMC X-4 using the RXTE/PCA observations at different phases of its 30.5 day long super-orbital period. Only out of eclipse data were used for this study. During the high state of the super-orbital period of LMC X-4, the spectrum is well described by a high energy cut-off power-law with a photon index in the range of 0.7-1.0 and an iron emission line. In the low state, the spectrum is found to be flatter with power-law photon index in the range 0.5-0.7. A direct correlation is detected between the continuum flux in 7-25 keV energy band and the iron emission line flux. The equivalent width of the iron emission line is found to be highly variable during low intensity state, whereas it remains almost constant during the high intensity state of the super-orbital period. It is observed that the spectral variations in LMC X-4 are similar to those of Her X-1 (using RXTE/PCA data). These results suggest that the geometry of the region where the iron line is produced and its visibility with respect to the phase of the super-orbital period is similar in LMC X-4 and Her X-1. A remarkable difference between these two systems is a highly variable absorption column density with phase of the super-orbital period that is observed in Her X-1 but not in LMC X-4.Comment: 7 pages, 5 figures, Accepted for publication in Astronomy and Astrophysic

    Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons

    Full text link
    Low-energy electron microscopy (LEEM) was used to measure the reflectivity of low-energy electrons from graphitized SiC(0001). The reflectivity shows distinct quantized oscillations as a function of the electron energy and graphite thickness. Conduction bands in thin graphite films form discrete energy levels whose wave vectors are normal to the surface. Resonance of the incident electrons with these quantized conduction band states enhances electrons to transmit through the film into the SiC substrate, resulting in dips in the reflectivity. The dip positions are well explained using tight-binding and first-principles calculations. The graphite thickness distribution can be determined microscopically from LEEM reflectivity measurements.Comment: 7 pages, 3 figure

    Spectral properties of the X-ray binary pulsar LMC X-4 during different intensity states

    Get PDF
    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out of eclipse data were used for this study. The 3-25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.Comment: 4 pages, 4 figure

    High resolution X-ray spectrum of the accreting binary X-ray pulsar GX 1+4

    Full text link
    We present here high resolution X-ray spectrum of the accreting binary X-ray pulsar GX 1+4 obtained with the High Energy Transmission Grating (HETG) instrument of the Chandra X-ray Observatory. This was supplemented by a simultaneous observation with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE). During this observation, the source was in a somewhat low intensity state and the pulse profile with both Chandra and RXTE shows a narrow dip, characteristic of GX 1+4 in medium and low intensity states. The continuum X-ray spectrum obtained with the HETG and PCA can be fitted well with a high energy cutoff power-law model with line of sight absorption. Interestingly, we find that this low state is accompanied by a relatively small absorption column density. A 6.4 keV narrow emission line with an equivalent width of 70 eV is clearly detected in the HETG spectrum. The fluorescence iron line, or at least part of it is produced in the neutral or lowly ionized iron in the circumstellar material that also causes most of the line of sight absorption. In the HETG spectrum, we have found evidence for a weak (equivalent width ~30 eV) emission line at 6.95 keV. This line is identified as Ly_alpha emission line from hydrogen-like iron and the spectrum does not show emission lines from helium-like iron. We discuss various emission regions for the hydrogen-like iron emission line, like gas diffused into the Alfven sphere or an accretion curtain flowing from the inner accretion disk to the magnetic poles.Comment: 15 pages, 4 postscript figures, accepted for publication in The Astrophysical Journa
    corecore