29,572 research outputs found
Thermodynamic properties of a dipolar Fermi gas
Based on the semi-classical theory, we investigate the thermodynamic
properties of a dipolar Fermi gas. Through a self-consistent procedure, we
numerically obtain the phase space distribution function at finite temperature.
We show that the deformations in both momentum and real space becomes smaller
and smaller as one increases the temperature. For homogeneous case, we also
calculate pressure, entropy, and heat capacity. In particular, at low
temperature limit and in weak interaction regime, we obtain an analytic
expression for the entropy, which agrees qualitatively with our numerical
result. The stability of a trapped gas at finite temperature is also explored
Multi-vortex dynamics in junctions of charge density waves
Ground state reconstruction by creation of topological defects in junctions
of CDWs is a convenient playground for modern efforts of field-effect
transformations in strongly correlated materials with spontaneous symmetry
breakings. Being transient, this effect contributes also to another new science
of pump-induced phase transitions. We present a dynamical model for behavior of
the CDW in restricted geometries of junctions under an applied voltage or a
passing current. The model takes into account multiple interacting fields: the
amplitude and the phase of the CDW complex order parameter, distributions of
the electric field, the density and the current of various normal carriers. A
particular challenge was to monitor the local conservation of the condensed and
the normal charge densities. That was done easily invoking the chiral
invariance and the associated anomaly, but prize is an unconventional
Ginsburg-Landau type theory which is not analytic with respect to the order
parameter. The numerical modeling poses unusual difficulties but still can
demonstrate that vortices are nucleated at the junction boundary when the
voltage across, or the current through, exceed a threshold.Comment: To be published in proceedings of the conference SUPERSTRIPES-2014,
A. Bianconi ed., J. Supercond. Nov. Mag., (2015
Kinetic, Spectroscopic, and X-Ray Crystallographic Evidence for the Cooperative Mechanism of the Hydration of Nitriles Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo Complex
The tetranuclear ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly cooperative catalyst for the nitrile hydration reaction. The cooperative mechanism of the hydration of benzonitrile was established by Hill inhibition kinetics. The treatment of a nitrile substrate with complex 1 led to the catalytically relevant nitrile-coordinated tetraruthenium complex 3. The X-ray structure of the nitrile-coordinated complex 3 showed a considerably “relaxed” tetrameric core structure compared to that of 1. The hydration of para-substituted benzonitriles p-X-C6H4CN with an electron-withdrawing group (X = Cl, Br, CO2H, CF3) exhibited cooperative kinetics, as indicated by the sigmoidal saturation kinetics, while the hydration of nitriles with an electron-donating group (X = OH, OMe, t-Bu, CH3) obeyed Michaelis–Menten saturation kinetics. The formation of a ruthenium hydride species was observed during the hydration of methacrylonitrile, and its monomeric nature was established by using DOSY NMR techniques
Highly Cooperative Tetrametallic Ruthenium-μ-Oxo-μ-Hydroxo Catalyst for the Alcohol Oxidation Reaction
The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern toward primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2 ± 0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols
Using Simple Neural Networks to Correct Errors in Optical Data Transmission.
We have demonstrated the applicability of
neural-network-based systems to the problem
of reducing the effects of signal distortion,
and shown that such a system has the potential
to reduce the bit-error-rate in the digitized
version of the analogue electrical signal
derived from an optical data stream by a
substantial margin over existing techniques
An Efficient Bandit Algorithm for Realtime Multivariate Optimization
Optimization is commonly employed to determine the content of web pages, such
as to maximize conversions on landing pages or click-through rates on search
engine result pages. Often the layout of these pages can be decoupled into
several separate decisions. For example, the composition of a landing page may
involve deciding which image to show, which wording to use, what color
background to display, etc. Such optimization is a combinatorial problem over
an exponentially large decision space. Randomized experiments do not scale well
to this setting, and therefore, in practice, one is typically limited to
optimizing a single aspect of a web page at a time. This represents a missed
opportunity in both the speed of experimentation and the exploitation of
possible interactions between layout decisions.
Here we focus on multivariate optimization of interactive web pages. We
formulate an approach where the possible interactions between different
components of the page are modeled explicitly. We apply bandit methodology to
explore the layout space efficiently and use hill-climbing to select optimal
content in realtime. Our algorithm also extends to contextualization and
personalization of layout selection. Simulation results show the suitability of
our approach to large decision spaces with strong interactions between content.
We further apply our algorithm to optimize a message that promotes adoption of
an Amazon service. After only a single week of online optimization, we saw a
21% conversion increase compared to the median layout. Our technique is
currently being deployed to optimize content across several locations at
Amazon.com.Comment: KDD'17 Audience Appreciation Awar
Hole maximum density droplets of an antidot in strong magnetic fields
We investigate a quantum antidot in the integer quantum Hall regime (the
filling factor is two) by using a Hartree-Fock approach and by transforming the
electron antidot into a system which confines holes via an electron-hole
transformation. We find that its ground state is the maximum density droplet of
holes in certain parameter ranges. The competition between electron-electron
interactions and the confinement potential governs the properties of the hole
droplet such as its spin configuration. The ground-state transitions between
the droplets with different spin configurations occur as magnetic field varies.
For a bell-shape antidot containing about 300 holes, the features of the
transitions are in good agreement with the predictions of a recently proposed
capacitive interaction model for antidots as well as recent experimental
observations. We show this agreement by obtaining the parameters of the
capacitive interaction model from the Hartree-Fock results. An inverse
parabolic antidot is also studied. Its ground-state transitions, however,
display different magnetic-field dependence from that of a bell-shape antidot.
Our study demonstrates that the shape of antidot potential affects its physical
properties significantly.Comment: 12 pages, 11 figure
Dynamical properties of a trapped dipolar Fermi gas at finite temperature
We investigate the dynamical properties of a trapped finite-temperature
normal Fermi gas with dipole-dipole interaction. For the free expansion
dynamics, we show that the expanded gas always becomes stretched along the
direction of the dipole moment. In addition, we present the temperature and
interaction dependences of the asymptotical aspect ratio. We further study the
collapse dynamics of the system by suddenly increasing the dipolar interaction
strength. We show that, in contrast to the anisotropic collapse of a dipolar
Bose-Einstein condensate, a dipolar Fermi gas always collapses isotropically
when the system becomes globally unstable. We also explore the interaction and
temperature dependences for the frequencies of the low-lying collective
excitations.Comment: 11 pages, 7 figure
- …