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Abstract 

We have demonstrated the applicability of 
neural-network-based systems to the problem 
of reducing the effects of signal distortion, 
and shown that such a system has the potential 
to reduce the bit-error-rate in the digitized 
version of the analogue electrical signal 
derived from an optical data stream by a 
substantial margin over existing techniques. 

1 Introduction 

Performance of fibre-optic communication links is 
typically affected by a complex combination of 
random processes (amplified spontaneous emission 
noise, polarization mode dispersion, and so on) and 
deterministic or quasi-deterministic effects (e.g. 
nonlinear inter- and intra-channel signal interactions, 
dispersive signal broadening and various cross-talks) 
that result from particular system design and 
operational regimes. 

Any installed fibre link has its specific 
transmission impairments: its signature of how the 
transmitted signal is corrupted and distorted.  This 
signature will change with data transmission speed, 
and may even change over time as the link's 
operating environment changes.  Therefore there is 
great potential for the application of adaptive signal 
post-processing that can undo some of the signal 
distortions or separate line-specific distortions from 
non-recoverable errors.  Signal post-processing in 
optical data communication can offer new margins in 
system performance in addition to other enabling 
techniques. 

A variety of post-processing techniques have 
been already used to improve overall system 
performance, for example tunable dispersion 
compensation, electronic equalization and others (see 
[1, 3, 7 & 8] and references therein).  Note that post-

processing can be applied both in the optical and the 
electrical domain (after conversion of the optical 
signal into an electric current). Application of 
electronic signal processing for compensation of 
transmission impairments is an attractive technique 
that has become quite popular thanks to recent 
advances in high-speed electronics. 

We have applied techniques of machine learning 
to adaptive signal post-processing in optical 
communication systems.  We demonstrate the 
feasibility of bit-error-rate improvement by adaptive 
post-processing of the received electrical signal. 

2 Background 

At the receiver (typically after filtering) the optical 
signal is converted by a photodiode into an electric 
current. Detection of the digital signal requires 
discrimination of the logical ones and zeroes using a 
threshold decision of some sort.  This can be done in 
different ways (e.g. by considering currents at certain 
optimized sample points within the bit time slots or 
by analyzing current integrated over some time 
interval) and is determined by the specific design of 
the receiver.  The approach proposed in this paper 
and described in detail below is generic and can 
easily be adapted to any particular receiver design. 

To improve system performance and minimize 
bit-error-rate, we propose here to use a trainable 
classifier so that the receiver may be adjusted to the 
characteristics of a particular line, and tuned over the 
lifetime of the line to take account of changes in 
operating conditions. 

The classifier is used to identify whether a vector 
coding a sample of the signal waveform represents a 
1 or a 0 in the digital domain, and tuning of the 
receiver is achieved by training the classifier with a 
set of waveform sample vectors for which the correct 
classifications are already known.  This may be 
achieved by sending known bit sequences along the 
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line to the receiver to provide examples of the 
transmission impairments that are specific to the line. 

The classification problem addressed here is a 
special instance of the more general class of time 
series problems.  Many of these problems have been 
addressed using supervised neural networks, 
typically employing a moving-window input vector. 
One special feature of the problem is the requirement 
for a simple two-way classification as the output of 
the classifier, suggesting that a single processing 
element may be used, as long as an appropriate 
activation function can be found.  For the sake of 
simplicity (and processing speed) it would be useful 
if a linear activation function could be used; 
however, this requires the sets of input vectors to be 
linearly separable (or to have a sufficiently small 
amount of overlap that a system can be constructed 
that has an acceptably low mis-classification rate).  In 
fact the problem at hand has several similarities to 
hardware branch prediction, a problem which is well 
known to be amenable to solution by the use of 
single-layered neural networks [2, 4 &5]. 

3 Description of the Data 

The input data used in this work comprises a series of 
values, each of which quantifies a sample of the 
electric current obtained after converting an analogue 
optical signal into an electrical one.  The analogue 
signal represents a sequence of bits.  An analogue 
signal carrying a sequence of 5 consecutive bits is 
shown in Figure 1. 

The analogue signal is sampled, with each sample 
being a floating-point number corresponding to the 
electric current at some point in time.  There are 32 
equally spaced sample points within a one bit time 
slot, so each bit in the signal is represented by 32 
floating-point numbers. 

We know the sequence of bits that was 
transmitted, so for each sequence of 32 samples in 
our data we know the bit that it represents.  Therefore 
the data consists of a sequence of 32-ary vectors, 
each with a corresponding binary label. 

 
Figure. 1.  An example of the analogue signal (representing light intensity) for a stream of 5 bits - 0 1 0 0 1 

 
 

Some bit sequences give rise to signals that make 
the middle bit very hard to classify (Figure 2).  In 
other cases both the central value and the cumulative 
energy of signal for the middle bit put it in one class 
when the human eye sees it as being in the other; 
such cases could be amenable to automatic 

identification.  Figure 3 shows an example of a signal 
where the classification obvious to the eye but where 
a misclassification may occur.  The central bit is a 
one but is misclassified as a zero from its energy 
alone. 

 



 

 
Figure 2. An example of an analogue signal where it is difficult to identify the middle bit correctly. 

It is meant to be a 0, but jitter has rendered it very hard to see. 
 

 
 

Figure 3.  The central bit has been dragged down by the two zeros surrounding it and is classified as a zero from 
its cumulative energy.  However to the human eye the presence of a 1 is obvious. 

 
 

1.1 Representation of the Data 

Different data sets can be produced depending on 
how the sampled electrical signal is represented.  As 

well as representing a single bit as a 32-ary vector 
(which we have called the Waveform-1 data set), it 
may be represented as a single cumulative energy 
value (the sum of the 32 values, Energy-1). 



 

We may also want to take advantage of 
information that may be present in adjacent bits.  To 
this end we have formed windowed inputs, in which 
the 3 vectors representing 3 contiguous bits are 
concatenated together with the label of the central bit 
being the target output (Waveform-3), see Figure 4.  
In addition, we have devised a representation that 
incorporate adjacent bit information by taking 3 
consecutive energy values (Energy-3), and another 
that employs 5 consecutive energy values from a 
window of 5 bits, with 2 either side of the target bit 
(Energy-5).  Table 1 gives a summary of all the 
different data sets. 

 
Table 1. The different data sets used in the First 
Experiment. 

Name Arity Description 
Energy-1 1 The energy of the target bit 

Energy-3 3 The energy of the target bit 
and one bit either side 

Energy-5 5 The energy of the target bit 
and 2 bits either side. 

Waveform-1 32 The waveform of the target 
bit 

Waveform-3 96 
The waveform of the target 

bit and the waveforms of the 
bits on either side 

4 Classifiers Used 

As already described, the classifiers need to be 
operationally very fast.  Therefore the main classifier 
we use is a simple single layer neural network (SLN).  
Once trained (this is done off-line in advance, using 
Iterated Re-weighted Least-Squares Training, as 
described on pp.132-138 of [4]) an SLN can be built 
in hardware and function with great speed.  For 
comparison purposes a classifier that employs an 
optimal energy threshold is implemented, where the 
threshold is found by 10-fold cross validation.  A 
Support Vector Machine (SVM) with Gaussian 
kernel is also used for comparison purposes in one 
set of results. 

5 Experiment 1 

As indicated earlier it was thought that sequences of 
bits up to 2 on either side of the target bit could 
influence the categorization.  There are 32 possible 5 
bit patterns and in our data we have 900 examples of 
each.  Each input vector was tagged according to 
which of these 32 different 5 bit patterns it came 
from, so that we could create training and test sets 
that contained representatives of all 32 patterns. 

Each set of 900 vectors (one set for each of the 32 
different 5 bit sequences) was randomly split into ten 
subsets of 90.  We partitioned the 32 sets in turn, 
taking 810 vectors (9 of the 10 subsets of 90) for use 
in the training set, and the remaining 90 vectors for 
use in testing the generalization ability of the system.  
The overall training set for each run contained 25,920 
(32 x 810) vectors, with the corresponding test set in 
each case being the 2,880 (32 x 90) vectors that were 
left out of the training set. 

The data were partitioned in ten different ways to 
produce ten different training sets (and ten 
corresponding test sets).  The results reported here 
are averages over the 10 different training and test 
sets.  The main results are given in Table 2. 

 
Table 2: The results of classifying the different test 
sets.  Note: the Optimal Threshold result is over the 
full data set and is not an average, whereas the other 
results are averages of the 10 fold cross validation 
process and are therefore test sets of one tenth the 
size of the full data set. 

Classifier Data Set 
Mean 

number of 
errors 

Error Rate 
% 

Optimal 
Threshold Energy-1 179 0.622 

SLN Energy-3 8.35 0.29 

SVM Energy-3 5.76 0.20 

SLN Energy-5 8.64 0.30 

SLN Waveform-1 4.23 0.147 

SLN Waveform-3 6.91 0.24 
 

The adaptable classifiers do give a significant 
improvement over the optimal energy threshold 
method, with the SLN using the Waveform-1 dataset 
giving the best result.  Interestingly the very simple 
classifier of the SLN/Energy-3 combination more 
than halved the error rate when compared to the 
optimal threshold method.  This classifier is simply a 
single unit with 3 weighted inputs.  There is no 
evidence here that the information in the two bits 
either side of the target bit (Energy-5) is useful.  

One difficulty for the trainable classifier is that in 
this data set the vast majority of examples are 
straightforward to classify.  The hard cases are very 
sparsely represented, so that, in an unusual sense, the 
data is imbalanced.  To examine more closely how a 
trainable classifier performs on the difficult cases 
Experiment 2 was undertaken. 

6 Experiment 2 

As described above, of the 28,800 bits in the data 
stream all but 179 are correctly identified by an 



 

energy threshold.  Out of the 32 distinct sequences of 
5 bits identified for experiment 1, only 10 are 
represented in this ‘difficult’ subset.  These ten 
sequences are: 

0 0 1 0 0 
0 0 1 0 1 
0 1 0 1 1 
1 0 1 0 0 
1 0 1 0 1 
1 0 1 1 0 
1 0 1 1 1 
1 1 0 1 0 
1 1 0 1 1 
1 1 1 0 1 

 
The majority of these involve a 1 0 1 or 0 1 0 

sequence around the middle bit, and these are the 
patterns for which difficulties are most likely to 
occur. In this experiment we attempt to concentrate 
on the learning of vectors that are likely to be hard to 
classify because they are drawn from these ‘difficult’ 
sequences 

We selected 91 of the 179 vectors that were mis-
classified by an energy threshold classifier for 
inclusion in the training set.  These included roughly 
half of the examples from each of the ten sequences 
shown above.  A further 85 vectors were used for 
testing; the 3 remaining mis-classified vectors were 

not used as each was a singleton in its class.  Each of 
the 91 mis-classified vectors was included in the 
training set 20 times, with the rest of the training set 
being made up of 100 examples of each of the ten 
‘difficult’ sequences that were correctly identified by 
the energy threshold.  This gives a training set of 
2820 vectors.  An SLN was then trained using these 
vectors and the resulting classifier was tested on the 
remaining 85 test patterns.  The results are given in 
Table 3 below. 
 
Table 3. The results of classifying the 85 patterns in 
the ‘difficult’ test set when the SLN is trained using a 
set containing a high proportion of ‘difficult’ vectors. 

Data Set Number of 
misclassifications 

Error Rate  
% 

Energy-1 67 78.7 
Energy-3 8 16.5 

Waveform-1 4 8.24 
Waveform-3 5 11.76 

 
Figure 4 shows the input profiles of a number of 
examples of one of the ‘difficult’ 5 bit sequences 
(10100).  The job of the classifier is to identify the 
central bit as a ‘1’.  It is clear that the SLN 
outperforms the energy thresholding system. 

 
Figure 4.  The blue lines represent those input streams that are correctly classified by both SLN and energy 
threshold systems.  The green lines represent those that are correctly classified by the SLN but mis-classified by 
the energy threshold system, and the red lines are those that are misclassified by both. 



 

 
 

With only 4 patterns misclassified by the best 
SLN classifier the overall error rate for the entire data 
set is now well below the desired 1 in a thousand.  It 
is also interesting that the Energy-3 representation 
gives only 8 misclassifications.  This shows that 
much useful information is present in the two bits 
either side of the target bit. 

Of course the classifier presented in this Section 
is not a workable solution.  It is not known a-priori 
whether a particular signal is part of the difficult set 
or should simply be sent to the energy thresholder.  
What the results do demonstrate, however, is that 
given enough balanced examples it is possible to 
correctly identify many of the difficult patterns. 

7 Discussion 

The fast decoding of a stream of data represented as 
pulses of light is a commercially important and 
challenging problem.  Even a small reduction in bit 
error rates can lead to a useful increase in data 
throughput. 

Computationally, the challenge is in the speed of 
the classifier and the need for simple pre- and post-
processing.  We have therefore restricted our 
classifier to be, for the most part, a single layer 
network and the data is either a sequence of electric 
current values or just the total energy of the pulse 
over a specified time.  Experiment 1 showed that by 
using an SLN trained with a set of 32-ary samples of 
the input stream the bit error rate could be reduced 
from the 0.62% achieved by the existing energy 
threshold method to 0.24%. 

This figure is still quite high and we suspected 
that the explanation might be that despite the data set 
being very large (28,800 examples) the number of 
difficult examples (those mis-classified by the 
threshold method) was very small and the behaviour 
of the system was dominated by the number of 
straightforward examples.  To see if we could 
correctly identify a significant number of these 
infrequent but difficult examples we undertook 
experiment 2.  Here it was shown that in a dataset in 
which these difficult examples were in the majority it 
was possible to train an SLN to correctly identify 
almost 90% of a set of unseen examples which were 
themselves mis-classified by the energy threshold 
method. 

Preliminary results from a third experiment (not 
presented here) suggest that both the sampling 
frequency and the sample resolution may be reduced 
with little or no deleterious effect on the SLN's 
ability to correctly classify analogue signals 
representing 'difficult' bit sequences.  This may turn 
out to be important, as both the sampling rate and the 
sample resolution will influence the cost of the 

hardware required to do the job in real time.  
However, in the absence of results from large-scale 
tests on real-world data it would be premature to 
make any recommendations regarding an appropriate 
sampling rate or sample resolution for use in a 
working system. 

In future we will be training and testing the SLN 
system with datasets that include a higher proportion 
of difficult bit sequences, and with large-scale 
datasets derived from communications channels that 
have much higher levels of noise than those 
investigated so far. 
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