1,311 research outputs found

    Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond d=2d=2 Blume-Capel model

    Full text link
    The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase transition regime of the pure model. For the random-bond version several disorder strengths are considered. We present phase diagram points of both pure and random versions and for a particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared to those of the random model. Accepting, for the weak random version, the assumption of the double logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio

    Strong Violation of Critical Phenomena Universality: Wang-Landau Study of the 2d Blume-Capel Model under Bond Randomness

    Full text link
    We study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures, thermal and magnetic critical exponents are determined for lattice sizes in the range L=20-100 via a sophisticated two-stage numerical strategy of entropic sampling in dominant energy subspaces, using mainly the Wang-Landau algorithm. The second-order phase transition, emerging under random bonds from the second-order regime of the pure model, has the same values of critical exponents as the 2d Ising universality class, with the effect of the bond disorder on the specific heat being well described by double-logarithmic corrections, our findings thus supporting the marginal irrelevance of quenched bond randomness. On the other hand, the second-order transition, emerging under bond randomness from the first-order regime of the pure model, has a distinctive universality class with \nu=1.30(6) and \beta/\nu=0.128(5). This amounts to a strong violation of the universality principle of critical phenomena, since these two second-order transitions, with different sets of critical exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore, the latter of these two transitions supports an extensive but weak universality, since it has the same magnetic critical exponent (but a different thermal critical exponent) as a wide variety of two-dimensional systems. In the conversion by bond randomness of the first-order transition of the pure system to second order, we detect, by introducing and evaluating connectivity spin densities, a microsegregation that also explains the increase we find in the phase transition temperature under bond randomness.Comment: Added discussion and references. 10 pages, 6 figures. Published versio

    Critical Point Correlation Function for the 2D Random Bond Ising Model

    Full text link
    High accuracy Monte Carlo simulation results for 1024*1024 Ising system with ferromagnetic impurity bonds are presented. Spin-spin correlation function at a critical point is found to be numerically very close to that of a pure system. This is not trivial since a critical temperature for the system with impurities is almost two times lower than pure Ising TcT_c. Finite corrections to the correlation function due to combined action of impurities and finite lattice size are described.Comment: 7 pages, 2 figures after LaTeX fil

    Critical behavior of the pure and random-bond two-dimensional triangular Ising ferromagnet

    Full text link
    We investigate the effects of quenched bond randomness on the critical properties of the two-dimensional ferromagnetic Ising model embedded in a triangular lattice. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method. In the first part of our study we present the finite-size scaling behavior of the pure model, for which we calculate the critical amplitude of the specific heat's logarithmic expansion. For the disordered system, the numerical data and the relevant detailed finite-size scaling analysis along the lines of the two well-known scenarios - logarithmic corrections versus weak universality - strongly support the field-theoretically predicted scenario of logarithmic corrections. A particular interest is paid to the sample-to-sample fluctuations of the random model and their scaling behavior that are used as a successful alternative approach to criticality.Comment: 10 pages, 8 figures, slightly revised version as accepted for publication in Phys. Rev.

    Scaling Analysis of the Site-Diluted Ising Model in Two Dimensions

    Get PDF
    A combination of recent numerical and theoretical advances are applied to analyze the scaling behaviour of the site-diluted Ising model in two dimensions, paying special attention to the implications for multiplicative logarithmic corrections. The analysis focuses primarily on the odd sector of the model (i.e., that associated with magnetic exponents), and in particular on its Lee-Yang zeros, which are determined to high accuracy. Scaling relations are used to connect to the even (thermal) sector, and a first analysis of the density of zeros yields information on the specific heat and its corrections. The analysis is fully supportive of the strong scaling hypothesis and of the scaling relations for logarithmic corrections.Comment: 15 pages, 3 figures. Published versio

    Wang-Landau study of the random bond square Ising model with nearest- and next-nearest-neighbor interactions

    Full text link
    We report results of a Wang-Landau study of the random bond square Ising model with nearest- (JnnJ_{nn}) and next-nearest-neighbor (JnnnJ_{nnn}) antiferromagnetic interactions. We consider the case R=Jnn/Jnnn=1R=J_{nn}/J_{nnn}=1 for which the competitive nature of interactions produces a sublattice ordering known as superantiferromagnetism and the pure system undergoes a second-order transition with a positive specific heat exponent α\alpha. For a particular disorder strength we study the effects of bond randomness and we find that, while the critical exponents of the correlation length ν\nu, magnetization β\beta, and magnetic susceptibility γ\gamma increase when compared to the pure model, the ratios β/ν\beta/\nu and γ/ν\gamma/\nu remain unchanged. Thus, the disordered system obeys weak universality and hyperscaling similarly to other two-dimensional disordered systems. However, the specific heat exhibits an unusually strong saturating behavior which distinguishes the present case of competing interactions from other two-dimensional random bond systems studied previously.Comment: 9 pages, 3 figures, version as accepted for publicatio

    Engineering of Low-Loss Metal for Nanoplasmonic and Metamaterials Applications

    Full text link
    We have shown that alloying a noble metal (gold) with another metal (cadmium), which can contribute two electrons per atom to a free electron gas, can significantly improve the metals optical properties in certain wavelength ranges and make them worse in the other parts of the spectrum. In particular, in the gold-cadmium alloy we have demonstrated a significant expansion of the spectral range of metallic reflectance to shorter wavelengths. The experimental results and the predictions of the first principles theory demonstrate an opportunity for the improvement and optimization of low-loss metals for nanoplasmonic and metamaterials applications.Comment: 14 Pages, 4 figure

    Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models

    Full text link
    Critical behaviour of two systems, subjected to the turbulent mixing, is studied by means of the field theoretic renormalization group. The first system, described by the equilibrium model A, corresponds to relaxational dynamics of a non-conserved order parameter. The second one is the strongly non-equilibrium reaction-diffusion system, known as Gribov process and equivalent to the Reggeon field theory. The turbulent mixing is modelled by the Kazantsev-Kraichnan "rapid-change" ensemble: time-decorrelated Gaussian velocity field with the power-like spectrum k^{-d-\xi}. Effects of compressibility of the fluid are studied. It is shown that, depending on the relation between the exponent \xi and the spatial dimension d, the both systems exhibit four different types of critical behaviour, associated with four possible fixed points of the renormalization group equations. The most interesting point corresponds to a new type of critical behaviour, in which the nonlinearity and turbulent mixing are both relevant, and the critical exponents depend on d, \xi and the degree of compressibility. For the both models, compressibility enhances the role of the nonlinear terms in the dynamical equations: the region in the d-\xi plane, where the new nontrivial regime is stable, is getting much wider as the degree of compressibility increases. In its turn, turbulent transfer becomes more efficient due to combined effects of the mixing and the nonlinear terms.Comment: 25 pages, 4 figure

    Scaling Relations for Logarithmic Corrections

    Get PDF
    Multiplicative logarithmic corrections to scaling are frequently encountered in the critical behavior of certain statistical-mechanical systems. Here, a Lee-Yang zero approach is used to systematically analyse the exponents of such logarithms and to propose scaling relations between them. These proposed relations are then confronted with a variety of results from the literature.Comment: 4 page
    • …
    corecore