62,735 research outputs found
Convex integration for Lipschitz mappings and counterexamples to regularity
We study Lispchitz solutions of partial differential relations , where is a vector-valued function in an open subset of . In some
cases the set of solutions turns out to be surprisingly large. The general
theory is then used to construct counter-examples to regularity of solutions of
Euler-Lagrange systems satisfying classical ellipticity conditions.Comment: 28 pages published versio
Submillimeter polarization and variability of quasar PKS 1830-211
Polarization from active galactic nuclei is interpreted as a signpost of the
role of magnetic fields in the launch and collimation of their relativistic
radio jets. Here, we report the detection of a clear polarization signal from
ALMA observations of the gravitationally lensed quasar PKS 1830-211 at
submillimeter wavelengths (Band 9, 650 GHz). Applying a
differential-polarimetry technique to the two compact lensed images of the
quasar, we estimate a fractional polarization of ~5% for one lensed image,
while the other appears nearly unpolarized, which implies that the polarization
activity varies on a timescale of a few weeks. With additional ALMA Band 7 and
8 (between 300-500 GHz) concomitant data, we constrain a Faraday rotation of a
few rad m. We also observe flux-density variability of ~10%
within one hour in Band 9. This work illustrates that a differential analysis
can extract high-accuracy information (flux-density ratio and polarimetry) free
of calibration issues from resolved sources in the submillimeter domain.Comment: 7 pages, 6 figures, accepted for publications in A&
Using gravitational lensed images to investigate the intrinsic AGN variability
We discuss about how the relative flux densities among the images of
gravitationally-lensed active galactic nuclei, AGN, can be used to study the
intrinsic AGN variability with high accuracy. Multi-frequency monitoring
observations of resolved gravitational lenses can allow us to detect signals of
very weak variability and also provide information about the jet opacity and
structure. As an example, we investigate the variability of the flux-density
ratio between the two lensed images of the blazar B0218+357, using
dual-frequency cm-wave observations. Similar to our previously reported
submm-wave observations of the lensed blazar PKS1830-211, we observe a clear
chromatic variability, starting short before an increase in the flux-density of
the blazar. The evolution of the flux-density ratios between the blazar images
shows a more clear and rich structure than that of the mere lightcurves of each
individual image. The accuracy in the ratio measurements is allowing us to see
variability episodes in the blazar that are weaker than the natural scatter in
the absolute flux-density measurements. A simple opacity model in the jet is
used to consistently explain the difference between the flux-density-ratio
evolution at the two frequencies.Comment: 5 pages, 2 figures. Accepted for publication in A&A. Final versio
Sequential Sparsening by Successive Adaptation in Neural Populations
In the principal cells of the insect mushroom body, the Kenyon cells (KC),
olfactory information is represented by a spatially and temporally sparse code.
Each odor stimulus will activate only a small portion of neurons and each
stimulus leads to only a short phasic response following stimulus onset
irrespective of the actual duration of a constant stimulus. The mechanisms
responsible for the sparse code in the KCs are yet unresolved.
Here, we explore the role of the neuron-intrinsic mechanism of
spike-frequency adaptation (SFA) in producing temporally sparse responses to
sensory stimulation in higher processing stages. Our single neuron model is
defined through a conductance-based integrate-and-fire neuron with
spike-frequency adaptation [1]. We study a fully connected feed-forward network
architecture in coarse analogy to the insect olfactory pathway. A first layer
of ten neurons represents the projection neurons (PNs) of the antenna lobe. All
PNs receive a step-like input from the olfactory receptor neurons, which was
realized by independent Poisson processes. The second layer represents 100 KCs
which converge onto ten neurons in the output layer which represents the
population of mushroom body extrinsic neurons (ENs).
Our simulation result matches with the experimental observations. In
particular, intracellular recordings of PNs show a clear phasic-tonic response
that outlasts the stimulus [2] while extracellular recordings from KCs in the
locust express sharp transient responses [3]. We conclude that the
neuron-intrinsic mechanism is can explain a progressive temporal response
sparsening in the insect olfactory system. Further experimental work is needed
to test this hypothesis empirically.
[1] Muller et. al., Neural Comput, 19(11):2958-3010, 2007. [2] Assisi et.
al., Nat Neurosci, 10(9):1176-1184, 2007. [3] Krofczik et. al. Front. Comput.
Neurosci., 2(9), 2009.Comment: 5 pages, 2 figures, This manuscript was submitted for review to the
Eighteenth Annual Computational Neuroscience Meeting CNS*2009 in Berlin and
accepted for oral presentation at the meetin
Isotopic ratios at z=0.68 from molecular absorption lines toward B 0218+357
Isotopic ratios of heavy elements are a key signature of the nucleosynthesis
processes in stellar interiors. The contribution of successive generations of
stars to the metal enrichment of the Universe is imprinted on the evolution of
isotopic ratios over time. We investigate the isotopic ratios of carbon,
nitrogen, oxygen, and sulfur through millimeter molecular absorption lines
arising in the z=0.68 absorber toward the blazar B 0218+357. We find that these
ratios differ from those observed in the Galactic interstellar medium, but are
remarkably close to those in the only other source at intermediate redshift for
which isotopic ratios have been measured to date, the z=0.89 absorber in front
of PKS1830-211. The isotopic ratios in these two absorbers should reflect
enrichment mostly from massive stars, and they are indeed close to the values
observed toward local starburst galaxies. Our measurements set constraints on
nucleosynthesis and chemical evolution models.Comment: Accepted for publication in Astronomy & Astrophysics; 10 pages, 9
figure
What is the temperature in heavy ion collisions?
We consider the Tsallis distribution as the source of the apparent slope of
one-particle spectra in heavy-ion collisions and investigate the equation of
state of this special quark matter in the framework of non-extensive
thermodynamics.Comment: Talk given by T.S.Biro at RHIC School 2003, Dec.8-11, 2003, Budapest,
Hungar
Void Scaling and Void Profiles in CDM Models
An analysis of voids using cosmological N-body simulations of cold dark
matter models is presented. It employs a robust statistics of voids, that was
recently applied to discriminate between data from the Las Campanas Redshift
Survey and different cosmological models. Here we extend the analysis to 3D and
show that typical void sizes D in the simulated galaxy samples obey a linear
scaling relation with the mean galaxy separation lambda: D=D_0+nu*lambda. It
has the same slope nu as in 2D, but with lower absolute void sizes. The scaling
relation is able to discriminate between different cosmologies. For the best
standard LCDM model, the slope of the scaling relation for voids in the dark
matter halos is too steep as compared to the LCRS, with too small void sizes
for well sampled data sets. The scaling relation of voids for dark matter halos
with increasing mass thresholds is even steeper than that for samples of
galaxy-mass halos where we sparse sample the data. This shows the stronger
clustering of more massive halos. Further, we find a correlation of the void
size to its central and environmental average density. While there is little
sign of an evolution in samples of small DM halos with v_{circ} ~ 90 km/s,
voids in halos with circular velocity over 200 km/s are larger at redshift z =
3 due to the smaller halo number density. The flow of dark matter from the
underdense to overdense regions in an early established network of large scale
structure is also imprinted in the evolution of the density profiles with a
relative density decrease in void centers by 0.18 per redshift unit between z=3
and z=0.Comment: 12 pages, 9 eps figures, submitted to MNRA
- …
