3,370 research outputs found

    A cesium gas strongly confined in one dimension : sideband cooling and collisional properties

    Get PDF
    We study one-dimensional sideband cooling of Cesium atoms strongly confined in a far-detuned optical lattice. The Lamb-Dicke regime is achieved in the lattice direction whereas the transverse confinement is much weaker. The employed sideband cooling method, first studied by Vuletic et al.\cite{Vule98}, uses Raman transitions between Zeeman levels and produces a spin-polarized sample. We present a detailed study of this cooling method and investigate the role of elastic collisions in the system. We accumulate 83(5)83(5)% of the atoms in the vibrational ground state of the strongly confined motion, and elastic collisions cool the transverse motion to a temperature of 2.8μ2.8 \mu K=0.7ωosc/kB0.7 \hbar\omega_{\rm osc}/k_{\rm B}, where ωosc\omega_{\rm osc} is the oscillation frequency in the strongly confined direction. The sample then approaches the regime of a quasi-2D cold gas. We analyze the limits of this cooling method and propose a dynamical change of the trapping potential as a mean of cooling the atomic sample to still lower temperatures. Measurements of the rate of thermalization between the weakly and strongly confined degrees of freedom are compatible with the zero energy scattering resonance observed previously in weak 3D traps. For the explored temperature range the measurements agree with recent calculations of quasi-2D collisions\cite{Petr01}. Transparent analytical models reproduce the expected behavior for kBTωosck_{\rm B}T \gg \hbar \omega_{\rm osc} and also for kBTωosck_{\rm B}T \ll \hbar \omega_{\rm osc} where the 2D features are prominent.Comment: 18 pages, 12 figure

    Single-crystal growth of the ternary BaFe2_2As2_2 phase using the vertical Bridgman technique

    Full text link
    Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe2_2As2_2 phase. We found that the BaFe2_2As2_2 phase most likely melts congruently and primarily solidifies either in the FeAs excess or Bax_{x}As100x_{100-x} excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba15_{15}Fe42.5_{42.5}As42.5_{42.5}. Large single crystals of the typical size 10x4x2 mm3^3 were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.Comment: Submitted to Jpn. J. Appl. Phys.; revise

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    An AC electric trap for ground-state molecules

    Full text link
    We here report on the realization of an electrodynamic trap, capable of trapping neutral atoms and molecules in both low-field and high-field seeking states. Confinement in three dimensions is achieved by switching between two electric field configurations that have a saddle-point at the center of the trap, i.e., by alternating a focusing and a defocusing force in each direction. AC trapping of 15ND3 molecules is experimentally demonstrated, and the stability of the trap is studied as a function of the switching frequency. A 1 mK sample of 15ND3 molecules in the high-field seeking component of the |J,K>=|1,1> level, the ground-state of para-ammonia, is trapped in a volume of about 1 mm^3

    Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors.

    Get PDF
    Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection

    Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2

    Full text link
    The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x=0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x=0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gap-like behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition), while the imaginary part of the spin susceptibility prominently resembles that of the overdoped cuprates. For the heavily overdoped, non-superconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio

    Derivation of CPT resonance signals from density-matrix equations with all relevant sublevels of Cs atoms and confirmation of experimental results

    Full text link
    Coherent-population-trapping resonance is a quantum interference effect that appears in the two-photon transitions between the ground-state hyperfine levels of alkali atoms and is often utilized in miniature clock devices. To quantitatively understand and predict the performance of this phenomenon, it is necessary to consider the transitions and relaxations between all hyperfine Zeeman sublevels involved in the different excitation processes of the atom. In this study, we constructed a computational multi-level atomic model of the Liouville density-matrix equation for 32 Zeeman sublevels involved in the D1D_1 line of 133^{133}Cs irradiated by two frequencies with circularly polarized components and then simulated the amplitude and shape of the transmitted light through a Cs vapor cell. We show that the numerical solutions of the equation and analytical investigations adequately explain a variety of the characteristics observed in the experiment.Comment: 24 pages, 8 figure

    Neutron scattering study on spin correlations and fluctuations in the transition-metal-based magnetic quasicrystal Zn-Fe-Sc

    Full text link
    Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a QQ-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature Tf7T_{\rm f} \simeq 7 K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below TfT_{\rm f}.Comment: To be published in Phys. Rev.
    corecore