6,030 research outputs found

    ABJM θ\theta-Bremsstrahlung at four loops and beyond: non-planar corrections

    Full text link
    We consider the Bremsstrahlung function associated to a 1/6-BPS Wilson loop in ABJM theory, with a cusp in the couplings to scalar fields. We non-trivially extend its recent four-loop computation at weak coupling to include non-planar corrections. We have recently proposed a conjecture relating this object to supersymmetric circular Wilson loops with multiple windings, which can be computed via localization. We find agreement between this proposal and the perturbative computation of the Bremsstrahlung function, including color sub-leading corrections. This supports the conjecture and hints at its validity beyond the planar approximation.Comment: 22 page

    ABJM θ\theta-Bremsstrahlung at four loops and beyond

    Full text link
    In ABJ(M) theory a generalized cusp can be constructed out of the 1/6 BPS Wilson line by introducing an angle φ\varphi in the spacial contour and/or an angle θ\theta in the internal R-symmetry space. The small angles limits of its anomalous dimension are controlled by corresponding Bremsstrahlung functions. In this note we compute the internal space θ\theta-Bremsstrahlung function to four loops at weak coupling in the planar limit. Based on this result, we propose an all order conjecture for the θ\theta-Bremsstrahlung function.Comment: 40 pages; v2: references added, JHEP published extended versio

    Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta

    Get PDF
    The induction of regulatory T (T reg) cells holds considerable potential as a treatment for autoimmune diseases. We have previously shown that CD4(+)CD25(hi) T reg cells isolated from patients with active rheumatoid arthritis (RA) have a defect in their ability to suppress proinflammatory cytokine production by CD4(+)CD25(-) T cells. This defect, however, was overcome after anti-tumor necrosis factor (TNF)-alpha antibody (infliximab) therapy. Here, we demonstrate that infliximab therapy gives rise to a CD4(+)CD25(hi)FoxP3(+) T reg cell population, which mediates suppression via transforming growth factor (TGF)-beta and interleukin 10, and lacks CD62L expression, thereby distinguishing this T reg cell subset from natural T reg cells present in healthy individuals and patients with active RA. In vitro, infliximab induced the differentiation of CD62L(-) T reg cells from CD4(+)CD25(-) T cells isolated from active RA patients, a process dependent on TGF-alpha. In spite of the potent suppressor capacity displayed by this CD62L(-) T reg cell population, the natural CD62L(+) T reg cells remained defective in infliximab-treated patients. These results suggest that anti-TNF-alpha therapy in RA patients generates a newly differentiated population of T reg cells, which compensates for the defective natural T reg cells. Therefore, manipulation of a proinflammatory environment could represent a therapeutic strategy for the induction of T reg cells and the restoration of tolerance

    A matrix model for the latitude Wilson loop in ABJM theory

    Get PDF
    In ABJ(M) theory, we propose a matrix model for the exact evaluation of BPS Wilson loops on a latitude circular contour, so providing a new weak-strong interpolation tool. Intriguingly, the matrix model turns out to be a particular case of that computing torus knot invariants in U(N1∣N2)U(N_1|N_2) Chern-Simons theory. At weak coupling we check our proposal against a three-loop computation, performed for generic framing, winding number and representation. The matrix model is amenable of a Fermi gas formulation, which we use to systematically compute the strong coupling and genus expansions. For the fermionic Wilson loop the leading planar behavior agrees with a previous string theory prediction. For the bosonic operator our result provides a clue for finding the corresponding string dual configuration. Our matrix model is consistent with recent proposals for computing Bremsstrahlung functions exactly in terms of latitude Wilson loops. As a by-product, we extend the conjecture for the exact B1/6θB^{\theta}_{1/6} Bremsstrahlung function to generic representations and test it with a four-loop perturbative computation. Finally, we propose an exact prediction for B1/2B_{1/2} at unequal gauge group ranks.Comment: 73 pages; v2: several improvements, JHEP published versio

    Star product and the general Leigh-Strassler deformation

    Get PDF
    We extend the definition of the star product introduced by Lunin and Maldacena to study marginal deformations of N=4 SYM. The essential difference from the latter is that instead of considering U(1)xU(1) non-R-symmetry, with charges in a corresponding diagonal matrix, we consider two Z_3-symmetries followed by an SU(3) transformation, with resulting off-diagonal elements. From this procedure we obtain a more general Leigh-Strassler deformation, including cubic terms with the same index, for specific values of the coupling constants. We argue that the conformal property of N=4 SYM is preserved, in both beta- (one-parameter) and gamma_{i}-deformed (three-parameters) theories, since the deformation for each amplitude can be extracted in a prefactor. We also conclude that the obtained amplitudes should follow the iterative structure of MHV amplitudes found by Bern, Dixon and Smirnov.Comment: 21 pages, no figures, JHEP3, v2: references added, v3: appendix A added, v4: clarification in section 3.

    Parallel Implementation of Efficient Search Schemes for the Inference of Cancer Progression Models

    Full text link
    The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference -- which can also involve multiple repetitions to collect statistically significant assessments of the data -- we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84x reduction of the overall execution time with respect to a traditional sequential implementation

    Electronic-enthalpy functional for finite systems under pressure

    Full text link
    We introduce the notion of electronic enthalpy for first-principles structural and dynamical calculations of finite systems under pressure. An external pressure field is allowed to act directly on the electronic structure of the system studied via the ground-state minimization of the functional E+PVqE+PV_{q}, where VqV_{q} is the quantum volume enclosed by a charge isosurface. The Hellmann-Feynman theorem applies, and assures that the ionic equations of motion follow an isoenthalpic dynamics. No pressurizing medium is explicitly required, while coatings of environmental ions or ligands can be introduced if chemically relevant. We apply this novel approach to the study of group-IV nanoparticles during a shock wave, highlighting the significant differences inthe plastic or elastic response of the diamond cage under load, and their potential use as novel nanostructured impact-absorbing materials.Comment: 4 pages, 4 figure

    Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands

    Full text link
    We calculate the double resonant (DR) Raman spectrum of graphene, and determine the lines associated to both phonon-defect processes, and two-phonons ones. Phonon and electronic dispersions reproduce calculations based on density functional theory corrected with GW. Electron-light, -phonon, and -defect scattering matrix elements and the electronic linewidth are explicitly calculated. Defect-induced processes are simulated by considering different kind of idealized defects. For an excitation energy of ϵL=2.4\epsilon_L=2.4 eV, the agreement with measurements is very good and calculations reproduce: the relative intensities among phonon-defect or among two-phonon lines; the measured small widths of the D, D′D', 2D and 2D′2D' lines; the line shapes; the presence of small intensity lines in the 1800, 2000 cm−1^{-1} range. We determine how the spectra depend on the excitation energy, on the light polarization, on the electronic linewidth, on the kind of defects and on their concentration. According to the present findings, the intensity ratio between the 2D′2D' and 2D lines can be used to determine experimentally the electronic linewidth. The intensity ratio between the DD and D′D' lines depends on the kind of model defect, suggesting that this ratio could possibly be used to identify the kind of defects present in actual samples. Charged impurities outside the graphene plane provide an almost undetectable contribution to the Raman signal

    Electron Transport and Hot Phonons in Carbon Nanotubes

    Full text link
    We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport scattering length, that we validate by accurate first principles calculations on (6,6) and (11,11) nanotubes. The comparison of our results with the scattering lengths fitted from experimental I-V curves indicates the presence of a non-equilibrium optical phonon heating induced by electron transport. We predict an effective temperature for optical phonons of thousands Kelvin.Comment: 4 pages, 1 figur
    • …
    corecore