19 research outputs found

    Computational Study of the Combustion and Atmospheric Decomposition of 2ā€‘Methylfuran

    No full text
    There is a growing interest in alkylfurans as potential biofuels. Recent work has highlighted the need for further study of the atmospheric oxidation mechanism of 2-methylfuran (2MF). This study utilizes the high level composite computational methods, G4 and CBS-QB3, to determine the bond dissociation energies for the Cā€“H bond in 2MF and the reaction enthalpies and barrier heights of several of the known possible initiation reaction pathways. This study also investigates the possible subsequent low temperature reaction pathways following the addition of OH and then O<sub>2</sub> onto the 2MF ring. The placement of the OH and O<sub>2</sub> on the ring, either cis or trans to each other, dictates the viability of subsequent reactions. Of particular interest is the observation that 1,4 H-migrations that abstract the hydrogen bound to the same carbon as the OH have abnormally low barrier height. This dramatic decrease puts the reaction barrier lower than concerted eliminations and 6-membered ring Waddington-type reactions. In addition, a novel reaction type, described as a Waddington concerted elimination, is reported herein. This reaction, when viable, is generally more favorable than other reactions. The results presented here are of interest to combustion modelers and atmospheric chemists, particularly those working on aromatic hydrocarbons and systems with conjugated double bonds

    Numerical modelling of ion transport in flames

    No full text
    <p>This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (<i>n</i>, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH<sub>4</sub>/O<sub>2</sub> flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at <a href="http://dx.doi.org/10.1080/13647830.2015.1090018" target="_blank">http://dx.doi.org/10.1080/13647830.2015.1090018</a>.</p

    Combustion Characteristics of C<sub>5</sub> Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    No full text
    C<sub>5</sub> alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C<sub>5</sub> alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C<sub>5</sub> alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C<sub>5</sub> alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C<sub>5</sub> alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C<sub>5</sub> alcohols can be used to improve the design and operation of advanced engine technologies

    PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics

    No full text
    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot formation in flames. Although the hydrogen abstraction C<sub>2</sub>H<sub>2</sub> addition (HACA) mechanism is believed to be the main contributor to PAH growth, it has been shown to under-predict some of the experimental data on PAHs and soot concentrations in flames. This article presents a submechanism of PAH growth that is initiated by propargyl (C<sub>3</sub>H<sub>3</sub>) addition onto naphthalene (A2) and the naphthyl radical. C<sub>3</sub>H<sub>3</sub> has been chosen since it is known to be a precursor of benzene in combustion and has appreciable concentrations in flames. This mechanism has been developed up to the formation of pyrene (A4), and the temperature-dependent kinetics of each elementary reaction has been determined using density functional theory (DFT) computations at the B3LYP/6-311++GĀ­(d,p) level of theory and transition state theory (TST). H-abstraction, H-addition, H-migration, Ī²-scission, and intramolecular addition reactions have been taken into account. The energy barriers of the two main pathways (H-abstraction and H-addition) were found to be relatively small if not negative, whereas the energy barriers of the other pathways were in the range of (6ā€“89 kcalĀ·mol<sup>ā€“1</sup>). The rates reported in this study may be extrapolated to larger PAH molecules that have a zigzag site similar to that in naphthalene, and the mechanism presented herein may be used as a complement to the HACA mechanism to improve prediction of PAH and soot formation

    Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline

    No full text
    This work examines the oxidation of a well-characterized, high-octane-number FACE (fuel for advanced combustion engines) F gasoline. Oxidation experiments were performed in a jet-stirred reactor (JSR) for FACE F gasoline under the following conditions: pressure, 10 bar; temperature, 530ā€“1250 K; residence time, 0.7s; equivalence ratios, 0.5, 1.0, and 2.0. Detailed species profiles were achieved by identification and quantification from gas chromatography with mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FTIR). Four surrogates, with physical and chemical properties that mimic the real fuel properties, were used for simulations, with a detailed gasoline surrogate kinetic model. Fuel and species profiles were well-captured and -predicted by comparisons between experimental results and surrogate simulations. Further analysis was performed using a quantities of interest (QoI) approach to show the differences between experimental and simulation results and to evaluate the gasoline surrogate kinetic model. Analysis of the multicomponent surrogate kinetic model indicated that iso-octane and alkyl aromatic oxidation reactions had impact on species profiles in the high-temperature region; however, the main production and consumption channels were related to smaller molecule reactions. The results presented here offer new insights into the oxidation chemistry of complex gasoline fuels and provide suggestions for the future development of surrogate kinetic models

    High-Pressure Limit Rate Rules for Ī±ā€‘H Isomerization of Hydroperoxyalkylperoxy Radicals

    No full text
    Hydroperoxyalkylperoxy (OOQOOH) radical isomerization is an important low-temperature chain branching reaction within the mechanism of hydrocarbon oxidation. This isomerization may proceed via the migration of the Ī±-hydrogen to the hydroperoxide group. In this work, a combination of high level composite methodsī—øCBS-QB3, G3, and G4ī—øis used to determine the high-pressure-limit rate parameters for the title reaction. Rate rules for H-migration reactions proceeding through 5-, 6-, 7-, and 8-membered ring transitions states are determined. Migrations from primary, secondary and tertiary carbon sites to the peroxy group are considered. Chirality is also investigated by considering two diastereomers for reactants and transition states with two chiral centers. This is important since chirality may influence the energy barrier of the reaction as well as the rotational energy barriers of hindered rotors in chemical species and transition states. The effect of chirality and hydrogen bonding interactions in the investigated energies and rate constants is studied. The results show that while the energy difference between two diastereomers ranges from 0.1ā€“3.2 kcal/mol, chirality hardly affects the kinetics, except at low temperatures (atmospheric conditions) or when two chiral centers are present in the reactant. Regarding the effect of the H-migration ring size, it is found that in most cases, the 1,5 and 1,6 H-migration reactions have similar rates at low temperatures (below āˆ¼830 K) since the 1,6 H-migration proceeds via a cyclohexane-like transition state similar to that of the 1,5 H-migration

    Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding

    No full text
    Hydroperoxyalkylperoxy (OOQOOH) radicals are important intermediates in combustion chemistry. The conventional isomerization of OOQOOH radicals to form ketohydroperoxides has been long believed to be the most important chain branching reaction under the low-temperature combustion conditions. In this work, the kinetics of competing pathways (alternative isomerization, concerted elimination, and H-exchange pathways) to the conventional isomerization of different Ī²-, Ī³- and Ī”-OOQOOH butane isomers are investigated. Six- and seven-membered ring conventional isomerizations are found to be the dominant pathways, whereas alternative isomerizations are more important than conventional isomerization, when the latter proceeded via a more strained transition state ring. The oxygen atoms in OOQOOH radicals introduce intramolecular hydrogen bonding (HB) that significantly affects the energies of reacting species and transition states, ultimately influencing chemical kinetics. Conceptually, HB has a dual effect on the stability of chemical species, the first being the stabilizing effect of the actual intramolecular HB force, and the second being the destabilizing effect of ring strain imposed by the HB conformer. The overall effect can be quantified by determining the difference between the minimum energy conformers of a chemical species or transition state that have HB and that do not have HB (non-hydrogen bonding (NHB)). The stabilization effect of HB on the species and transition sates is assessed, and its effect on the calculated rate constants is also considered. Our results show that, for most species and transition states, HB stabilizes their energies by as much as 2.5 kcal/mol. However, NHB conformers are found to be more stable by up to 2.7 kcal/mol for a few of the considered species. To study the effect of HB on rate constants, reactions are categorized into two groups (<i>groups one</i> and <i>two</i>) based on the structural similarity of the minimum energy conformers of the reactant and transition state, for a particular reaction. For cases where the reactant and transition state conformers are similar (i.e., both HB or NHB structures), <i>group one</i>, the effect of HB on reaction kinetics is major only if the magnitudes of the stabilization energy of the reactant <i>and</i> transition state are quite different. Meanwhile, <i>for group two</i>, where the reactant and transition state prefer different conformers (one HB and the other NHB), HB affects the kinetics when the stabilization energy of the reactant <i>or</i> transition state is significant or the entropy effect is important. This information is useful in determining corrections accounting for HB effects when assigning rate parameters for chemical reactions using estimation and/or analogy, where analogies usually result in inaccuracies when modeling atmospheric and combustion processes

    Effect of the Methyl Substitution on the Combustion of Two Methylheptane Isomers: Flame Chemistry Using Vacuum-Ultraviolet (VUV) Photoionization Mass Spectrometry

    No full text
    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH<sub>3</sub>, HCO, C<sub>2</sub>H<sub>3</sub>, C<sub>3</sub>H<sub>3</sub>, and C<sub>3</sub>H<sub>5</sub>). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH<sub>3</sub> position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms

    Effect of the Methyl Substitution on the Combustion of Two Methylheptane Isomers: Flame Chemistry Using Vacuum-Ultraviolet (VUV) Photoionization Mass Spectrometry

    No full text
    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH<sub>3</sub>, HCO, C<sub>2</sub>H<sub>3</sub>, C<sub>3</sub>H<sub>3</sub>, and C<sub>3</sub>H<sub>5</sub>). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH<sub>3</sub> position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms

    High-Pressure Limit Rate Rules for Ī±ā€‘H Isomerization of Hydroperoxyalkylperoxy Radicals

    No full text
    Hydroperoxyalkylperoxy (OOQOOH) radical isomerization is an important low-temperature chain branching reaction within the mechanism of hydrocarbon oxidation. This isomerization may proceed via the migration of the Ī±-hydrogen to the hydroperoxide group. In this work, a combination of high level composite methodsī—øCBS-QB3, G3, and G4ī—øis used to determine the high-pressure-limit rate parameters for the title reaction. Rate rules for H-migration reactions proceeding through 5-, 6-, 7-, and 8-membered ring transitions states are determined. Migrations from primary, secondary and tertiary carbon sites to the peroxy group are considered. Chirality is also investigated by considering two diastereomers for reactants and transition states with two chiral centers. This is important since chirality may influence the energy barrier of the reaction as well as the rotational energy barriers of hindered rotors in chemical species and transition states. The effect of chirality and hydrogen bonding interactions in the investigated energies and rate constants is studied. The results show that while the energy difference between two diastereomers ranges from 0.1ā€“3.2 kcal/mol, chirality hardly affects the kinetics, except at low temperatures (atmospheric conditions) or when two chiral centers are present in the reactant. Regarding the effect of the H-migration ring size, it is found that in most cases, the 1,5 and 1,6 H-migration reactions have similar rates at low temperatures (below āˆ¼830 K) since the 1,6 H-migration proceeds via a cyclohexane-like transition state similar to that of the 1,5 H-migration
    corecore