7 research outputs found

    Exchangeable Random Networks

    Full text link
    We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and complex networks. A particular case of directed networks with power-law out--degree is studied in more detail, as an example of the flexibility of the model in applications.Comment: to appear on "Internet Mathematics

    Coevolution of Glauber-like Ising dynamics on typical networks

    Full text link
    We consider coevolution of site status and link structures from two different initial networks: a one dimensional Ising chain and a scale free network. The dynamics is governed by a preassigned stability parameter SS, and a rewiring factor Ï•\phi, that determines whether the Ising spin at the chosen site flips or whether the node gets rewired to another node in the system. This dynamics has also been studied with Ising spins distributed randomly among nodes which lie on a network with preferential attachment. We have observed the steady state average stability and magnetisation for both kinds of systems to have an idea about the effect of initial network topology. Although the average stability shows almost similar behaviour, the magnetisation depends on the initial condition we start from. Apart from the local dynamics, the global effect on the dynamics has also been studied. These parameters show interesting variations for different values of SS and Ï•\phi, which helps in determining the steady-state condition for a given substrate.Comment: 8 pages, 10 figure
    corecore