50 research outputs found

    Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

    Get PDF
    Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury

    Peirce's better triad

    No full text
    This chapter is part of Part II: Judging documentary images [The referential integrity of the documentary image

    Blockade of CD40–CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren’s syndrome

    No full text
    OBJECTIVE: To examine the role of CD40-CD154 costimulation and effects of therapeutic pathway blockade in the non-obese diabetic (NOD/ShiLtJ) model of Sjögren's syndrome (SS). METHODS: We assessed leucocyte infiltration in salivary glands (SGs) from NOD/ShiLtJ mice by immunohistochemistry and examined transcriptomics data of SG tissue from these animals for evidence of a CD40 pathway gene signature. Additionally, we dosed MR1 (anti-CD154 antibody) in NOD mice after the onset of SS-like disease and examined the effects of MR1 treatment on sialadenitis, autoantibody production, SG leucocyte infiltration, gene expression downstream of CD40 and acquaporin 5 (AQP5) expression. RESULTS: We could detect evidence of CD40 expression and pathway activation in SG tissue from NOD mice. Additionally, therapeutic treatment with MR1 suppressed CD40 pathway genes and sialadenitis, inhibited ectopic lymphoid structure formation and autoantibody production, as well as decreased the frequency of antibody-secreting cells in SGs but had minimal effects on AQP5 expression in NOD/ShiLtJ SGs. CONCLUSION: CD40-CD154 interactions play an important role in key pathological processes in a mouse model of SS, suggesting that blockade of this costimulatory pathway in the clinic may have beneficial therapeutic effects in patients suffering from this autoimmune exocrinopathy
    corecore