55 research outputs found

    Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    Get PDF
    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed the glycerol conversion of 97 % within 2 hours of reaction. At this condition, the selectivity to glyceryl monoacetate (MAG), glyceryl diacetate (DAG), and glyceryl triacetate (TAG) were 27.0 %, 49.9 % and 23.1 %, respectively, after 5 h of reaction. After three consecutive runs, the 2 M SO42–/γ-Al2O3 catalysts showed superior performance and no loss in activity was observed. The reaction kinetics results over 2 M SO42–/γ-Al2O3 catalyst showed that the dependence on the reaction rate to glycerol concentration was of pseudo-second order, while the activation energy was found to be 106 kJ mol–1

    Leader RNA of Rinderpest virus binds specifically with cellular La protein: a possible role in virus replication

    Get PDF
    Rinderpest virus (RPV) is an important member of the Morbillivirus genus in the family Paramyxoviridae and employs a similar strategy for transcription and replication of its genome as that of other negative sense RNA viruses. Cellular proteins have earlier been shown to stimulate viral RNA synthesis by isolated nucleocapsids from purified virus or from virus-infected cells. In the present work, we show that plus sense leader RNA of RPV, transcribed from 3' end of genomic RNA, specifically interacts with cellular La protein employing gel mobility shift assay as well as UV cross-linking of leader RNA with La protein. The leader RNA synthesized in virus-infected cells was shown to interact with La protein by immunoprecipitation of leader RNA bound to La protein and detecting the leader RNA in the immunoprecipitate by Northern hybridization with labeled antisense leader RNA. Employing a minireplicon system, we demonstrate that transiently expressed La protein enhances the replication/transcription of the RPV minigenome in cells. Sub-cellular immunolocalization shows that La protein is redistributed from nucleus to the cytoplasm upon infection. Our results strongly suggest that La protein may be involved in regulation of Rinderpest virus replication

    Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus

    Get PDF
    HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3pro) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3pro binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3pro as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3pro binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV

    A La Autoantigen Homologue Is Required for the Internal Ribosome Entry Site Mediated Translation of Giardiavirus

    Get PDF
    Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5′ untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200–348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus

    Refractoriness of hepatitis C virus internal ribosome entry site to processing by Dicer in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) is a positive-strand RNA virus harboring a highly structured internal ribosome entry site (IRES) in the 5' nontranslated region of its genome. Important for initiating translation of viral RNAs into proteins, the HCV IRES is composed of RNA structures reminiscent of microRNA precursors that may be targeted by the host RNA silencing machinery.</p> <p>Results</p> <p>We report that HCV IRES can be recognized and processed into small RNAs by the human ribonuclease Dicer in vitro. Furthermore, we identify domains II, III and VI of HCV IRES as potential substrates for Dicer in vitro. However, maintenance of the functional integrity of the HCV IRES in response to Dicer overexpression suggests that the structure of the HCV IRES abrogates its processing by Dicer in vivo.</p> <p>Conclusion</p> <p>Our results suggest that the HCV IRES may have evolved to adopt a structure or a cellular context that is refractory to Dicer processing, which may contribute to viral escape of the host RNA silencing machinery.</p

    Blood pressure-lowering effects of nifedipine/candesartan combinations in high-risk individuals: Subgroup analysis of the DISTINCT randomised trial

    Get PDF
    The DISTINCT study (reDefining Intervention with Studies Testing Innovative Nifedipine GITS - Candesartan Therapy) investigated the efficacy and safety of nifedipine GITS/candesartan cilexetil combinations vs respective monotherapies and placebo in patients with hypertension. This descriptive sub-analysis examined blood pressure (BP)-lowering effects in high-risk participants, including those with renal impairment (estimated glomerular filtration rate<90 ml min-1, n=422), type 2 diabetes mellitus (n=202), hypercholesterolaemia (n=206) and cardiovascular (CV) risk factors (n=971), as well as the impact of gender, age and body mass index (BMI). Participants with grade I/II hypertension were randomised to treatment with nifedipine GITS (N) 20, 30, 60 mg and/or candesartan cilexetil (C) 4, 8, 16, 32 mg or placebo for 8 weeks. Mean systolic BP and diastolic BP reductions after treatment in high-risk participants were greater, overall, with N/C combinations vs respective monotherapies or placebo, with indicators of a dose-response effect. Highest rates of BP control (ESH/ESC 2013 guideline criteria) were also achieved with highest doses of N/C combinations in each high-risk subgroup. The benefits of combination therapy vs monotherapy were additionally observed in patient subgroups categorised by gender, age or BMI. All high-risk participants reported fewer vasodilatory adverse events in the pooled N/C combination therapy than the N monotherapy group. In conclusion, consistent with the DISTINCT main study outcomes, high-risk participants showed greater reductions in BP and higher control rates with N/C combinations compared with respective monotherapies and lesser vasodilatory side-effects compared with N monotherapy

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    A Generic EMI-Immune Technique for Differential Amplifiers With Single-Ended Output

    Full text link
    This paper presents a unique methodology to calculate the filtering capacitances of the OpAmp already reported in the literature. The methodology aims to show that there is an optimal solution that can be used to increase the electromagnetic interference (EMI) immunity of any OpAmp for a wide range of frequencies. By using this proposed methodology, an OpAmp structure that reduces the EMI effect is designed in standard 0.18 μm mixed-mode CMOS technology. Detailed mathematical analyses and simulation results are presented and discussed. Simulation results show that the maximum EMI-induced offset voltage in the frequency range from 1 MHz to 1 GHz for the OpAmp is 4.4 mV. In contrast, the standard Miller OpAmp exhibits a maximum EMI-induced offset voltage of 92.4 mV under the same operating conditions. © 2017 IEEE
    corecore